"""Python net specification. This module provides a way to write nets directly in Python, using a natural, functional style. See examples/pycaffe/caffenet.py for an example. Currently this works as a thin wrapper around the Python protobuf interface, with layers and parameters automatically generated for the "layers" and "params" pseudo-modules, which are actually objects using __getattr__ magic to generate protobuf messages. Note that when using to_proto or Top.to_proto, names of intermediate blobs will be automatically generated. To explicitly specify blob names, use the NetSpec class -- assign to its attributes directly to name layers, and call NetSpec.to_proto to serialize all assigned layers. This interface is expected to continue to evolve as Caffe gains new capabilities for specifying nets. In particular, the automatically generated layer names are not guaranteed to be forward-compatible. """ from collections import OrderedDict, Counter from .proto import caffe_pb2 from google import protobuf import six def param_name_dict(): """Find out the correspondence between layer names and parameter names.""" layer = caffe_pb2.LayerParameter() # get all parameter names (typically underscore case) and corresponding # type names (typically camel case), which contain the layer names # (note that not all parameters correspond to layers, but we'll ignore that) param_names = [f.name for f in layer.DESCRIPTOR.fields if f.name.endswith('_param')] param_type_names = [type(getattr(layer, s)).__name__ for s in param_names] # strip the final '_param' or 'Parameter' param_names = [s[:-len('_param')] for s in param_names] param_type_names = [s[:-len('Parameter')] for s in param_type_names] return dict(zip(param_type_names, param_names)) def to_proto(*tops): """Generate a NetParameter that contains all layers needed to compute all arguments.""" layers = OrderedDict() autonames = Counter() for top in tops: top.fn._to_proto(layers, {}, autonames) net = caffe_pb2.NetParameter() net.layer.extend(layers.values()) return net def assign_proto(proto, name, val): """Assign a Python object to a protobuf message, based on the Python type (in recursive fashion). Lists become repeated fields/messages, dicts become messages, and other types are assigned directly. For convenience, repeated fields whose values are not lists are converted to single-element lists; e.g., `my_repeated_int_field=3` is converted to `my_repeated_int_field=[3]`.""" is_repeated_field = hasattr(getattr(proto, name), 'extend') if is_repeated_field and not isinstance(val, list): val = [val] if isinstance(val, list): if isinstance(val[0], dict): for item in val: proto_item = getattr(proto, name).add() for k, v in six.iteritems(item): assign_proto(proto_item, k, v) else: getattr(proto, name).extend(val) elif isinstance(val, dict): for k, v in six.iteritems(val): assign_proto(getattr(proto, name), k, v) else: setattr(proto, name, val) class Top(object): """A Top specifies a single output blob (which could be one of several produced by a layer.)""" def __init__(self, fn, n): self.fn = fn self.n = n def to_proto(self): """Generate a NetParameter that contains all layers needed to compute this top.""" return to_proto(self) def _to_proto(self, layers, names, autonames): return self.fn._to_proto(layers, names, autonames) class Function(object): """A Function specifies a layer, its parameters, and its inputs (which are Tops from other layers).""" def __init__(self, type_name, inputs, params): self.type_name = type_name self.inputs = inputs self.params = params self.ntop = self.params.get('ntop', 1) # use del to make sure kwargs are not double-processed as layer params if 'ntop' in self.params: del self.params['ntop'] self.in_place = self.params.get('in_place', False) if 'in_place' in self.params: del self.params['in_place'] self.tops = tuple(Top(self, n) for n in range(self.ntop)) def _get_name(self, names, autonames): if self not in names and self.ntop > 0: names[self] = self._get_top_name(self.tops[0], names, autonames) elif self not in names: autonames[self.type_name] += 1 names[self] = self.type_name + str(autonames[self.type_name]) return names[self] def _get_top_name(self, top, names, autonames): if top not in names: autonames[top.fn.type_name] += 1 names[top] = top.fn.type_name + str(autonames[top.fn.type_name]) return names[top] def _to_proto(self, layers, names, autonames): if self in layers: return bottom_names = [] for inp in self.inputs: inp._to_proto(layers, names, autonames) bottom_names.append(layers[inp.fn].top[inp.n]) layer = caffe_pb2.LayerParameter() layer.type = self.type_name layer.bottom.extend(bottom_names) if self.in_place: layer.top.extend(layer.bottom) else: for top in self.tops: layer.top.append(self._get_top_name(top, names, autonames)) layer.name = self._get_name(names, autonames) for k, v in six.iteritems(self.params): # special case to handle generic *params if k.endswith('param'): assign_proto(layer, k, v) else: try: assign_proto(getattr(layer, _param_names[self.type_name] + '_param'), k, v) except (AttributeError, KeyError): assign_proto(layer, k, v) layers[self] = layer class NetSpec(object): """A NetSpec contains a set of Tops (assigned directly as attributes). Calling NetSpec.to_proto generates a NetParameter containing all of the layers needed to produce all of the assigned Tops, using the assigned names.""" def __init__(self): super(NetSpec, self).__setattr__('tops', OrderedDict()) def __setattr__(self, name, value): self.tops[name] = value def __getattr__(self, name): return self.tops[name] def __setitem__(self, key, value): self.__setattr__(key, value) def __getitem__(self, item): return self.__getattr__(item) def to_proto(self): names = {v: k for k, v in six.iteritems(self.tops)} autonames = Counter() layers = OrderedDict() for name, top in six.iteritems(self.tops): top._to_proto(layers, names, autonames) net = caffe_pb2.NetParameter() net.layer.extend(layers.values()) return net class Layers(object): """A Layers object is a pseudo-module which generates functions that specify layers; e.g., Layers().Convolution(bottom, kernel_size=3) will produce a Top specifying a 3x3 convolution applied to bottom.""" def __getattr__(self, name): def layer_fn(*args, **kwargs): fn = Function(name, args, kwargs) if fn.ntop == 0: return fn elif fn.ntop == 1: return fn.tops[0] else: return fn.tops return layer_fn class Parameters(object): """A Parameters object is a pseudo-module which generates constants used in layer parameters; e.g., Parameters().Pooling.MAX is the value used to specify max pooling.""" def __getattr__(self, name): class Param: def __getattr__(self, param_name): return getattr(getattr(caffe_pb2, name + 'Parameter'), param_name) return Param() _param_names = param_name_dict() layers = Layers() params = Parameters()