rpn_test.pt 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. name: "ZF"
  2. input: "data"
  3. input_shape {
  4. dim: 1
  5. dim: 3
  6. dim: 224
  7. dim: 224
  8. }
  9. input: "im_info"
  10. input_shape {
  11. dim: 1
  12. dim: 3
  13. }
  14. # ------------------------ layer 1 -----------------------------
  15. layer {
  16. name: "conv1"
  17. type: "Convolution"
  18. bottom: "data"
  19. top: "conv1"
  20. convolution_param {
  21. num_output: 96
  22. kernel_size: 7
  23. pad: 3
  24. stride: 2
  25. }
  26. }
  27. layer {
  28. name: "relu1"
  29. type: "ReLU"
  30. bottom: "conv1"
  31. top: "conv1"
  32. }
  33. layer {
  34. name: "norm1"
  35. type: "LRN"
  36. bottom: "conv1"
  37. top: "norm1"
  38. lrn_param {
  39. local_size: 3
  40. alpha: 0.00005
  41. beta: 0.75
  42. norm_region: WITHIN_CHANNEL
  43. engine: CAFFE
  44. }
  45. }
  46. layer {
  47. name: "pool1"
  48. type: "Pooling"
  49. bottom: "norm1"
  50. top: "pool1"
  51. pooling_param {
  52. kernel_size: 3
  53. stride: 2
  54. pad: 1
  55. pool: MAX
  56. }
  57. }
  58. layer {
  59. name: "conv2"
  60. type: "Convolution"
  61. bottom: "pool1"
  62. top: "conv2"
  63. convolution_param {
  64. num_output: 256
  65. kernel_size: 5
  66. pad: 2
  67. stride: 2
  68. }
  69. }
  70. layer {
  71. name: "relu2"
  72. type: "ReLU"
  73. bottom: "conv2"
  74. top: "conv2"
  75. }
  76. layer {
  77. name: "norm2"
  78. type: "LRN"
  79. bottom: "conv2"
  80. top: "norm2"
  81. lrn_param {
  82. local_size: 3
  83. alpha: 0.00005
  84. beta: 0.75
  85. norm_region: WITHIN_CHANNEL
  86. engine: CAFFE
  87. }
  88. }
  89. layer {
  90. name: "pool2"
  91. type: "Pooling"
  92. bottom: "norm2"
  93. top: "pool2"
  94. pooling_param {
  95. kernel_size: 3
  96. stride: 2
  97. pad: 1
  98. pool: MAX
  99. }
  100. }
  101. layer {
  102. name: "conv3"
  103. type: "Convolution"
  104. bottom: "pool2"
  105. top: "conv3"
  106. convolution_param {
  107. num_output: 384
  108. kernel_size: 3
  109. pad: 1
  110. stride: 1
  111. }
  112. }
  113. layer {
  114. name: "relu3"
  115. type: "ReLU"
  116. bottom: "conv3"
  117. top: "conv3"
  118. }
  119. layer {
  120. name: "conv4"
  121. type: "Convolution"
  122. bottom: "conv3"
  123. top: "conv4"
  124. convolution_param {
  125. num_output: 384
  126. kernel_size: 3
  127. pad: 1
  128. stride: 1
  129. }
  130. }
  131. layer {
  132. name: "relu4"
  133. type: "ReLU"
  134. bottom: "conv4"
  135. top: "conv4"
  136. }
  137. layer {
  138. name: "conv5"
  139. type: "Convolution"
  140. bottom: "conv4"
  141. top: "conv5"
  142. convolution_param {
  143. num_output: 256
  144. kernel_size: 3
  145. pad: 1
  146. stride: 1
  147. }
  148. }
  149. layer {
  150. name: "relu5"
  151. type: "ReLU"
  152. bottom: "conv5"
  153. top: "conv5"
  154. }
  155. #-----------------------layer +-------------------------
  156. layer {
  157. name: "rpn_conv1"
  158. type: "Convolution"
  159. bottom: "conv5"
  160. top: "rpn_conv1"
  161. convolution_param {
  162. num_output: 256
  163. kernel_size: 3 pad: 1 stride: 1
  164. }
  165. }
  166. layer {
  167. name: "rpn_relu1"
  168. type: "ReLU"
  169. bottom: "rpn_conv1"
  170. top: "rpn_conv1"
  171. }
  172. layer {
  173. name: "rpn_cls_score"
  174. type: "Convolution"
  175. bottom: "rpn_conv1"
  176. top: "rpn_cls_score"
  177. convolution_param {
  178. num_output: 18 # 2(bg/fg) * 9(anchors)
  179. kernel_size: 1 pad: 0 stride: 1
  180. }
  181. }
  182. layer {
  183. name: "rpn_bbox_pred"
  184. type: "Convolution"
  185. bottom: "rpn_conv1"
  186. top: "rpn_bbox_pred"
  187. convolution_param {
  188. num_output: 36 # 4 * 9(anchors)
  189. kernel_size: 1 pad: 0 stride: 1
  190. }
  191. }
  192. layer {
  193. bottom: "rpn_cls_score"
  194. top: "rpn_cls_score_reshape"
  195. name: "rpn_cls_score_reshape"
  196. type: "Reshape"
  197. reshape_param { shape { dim: 0 dim: 2 dim: -1 dim: 0 } }
  198. }
  199. #-----------------------output------------------------
  200. layer {
  201. name: "rpn_cls_prob"
  202. type: "Softmax"
  203. bottom: "rpn_cls_score_reshape"
  204. top: "rpn_cls_prob"
  205. }
  206. layer {
  207. name: 'rpn_cls_prob_reshape'
  208. type: 'Reshape'
  209. bottom: 'rpn_cls_prob'
  210. top: 'rpn_cls_prob_reshape'
  211. reshape_param { shape { dim: 0 dim: 18 dim: -1 dim: 0 } }
  212. }
  213. layer {
  214. name: 'proposal'
  215. type: 'Python'
  216. bottom: 'rpn_cls_prob_reshape'
  217. bottom: 'rpn_bbox_pred'
  218. bottom: 'im_info'
  219. top: 'rois'
  220. top: 'scores'
  221. python_param {
  222. module: 'vi_od_frcnn.rpn.proposal_layer'
  223. layer: 'ProposalLayer'
  224. param_str: "'feat_stride': 16"
  225. }
  226. }