123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- #include <Python.h> // NOLINT(build/include_alpha)
- // Produce deprecation warnings (needs to come before arrayobject.h inclusion).
- #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
- #include <boost/make_shared.hpp>
- #include <boost/python.hpp>
- #include <boost/python/raw_function.hpp>
- #include <boost/python/suite/indexing/vector_indexing_suite.hpp>
- #include <boost/python/enum.hpp>
- #include <numpy/arrayobject.h>
- // these need to be included after boost on OS X
- #include <string> // NOLINT(build/include_order)
- #include <vector> // NOLINT(build/include_order)
- #include <fstream> // NOLINT
- #include "caffe/caffe.hpp"
- #include "caffe/layers/memory_data_layer.hpp"
- #include "caffe/layers/python_layer.hpp"
- #include "caffe/sgd_solvers.hpp"
- // Temporary solution for numpy < 1.7 versions: old macro, no promises.
- // You're strongly advised to upgrade to >= 1.7.
- #ifndef NPY_ARRAY_C_CONTIGUOUS
- #define NPY_ARRAY_C_CONTIGUOUS NPY_C_CONTIGUOUS
- #define PyArray_SetBaseObject(arr, x) (PyArray_BASE(arr) = (x))
- #endif
- namespace bp = boost::python;
- namespace caffe {
- // For Python, for now, we'll just always use float as the type.
- typedef float Dtype;
- const int NPY_DTYPE = NPY_FLOAT32;
- // Selecting mode.
- void set_mode_cpu() { Caffe::set_mode(Caffe::CPU); }
- void set_mode_gpu() { Caffe::set_mode(Caffe::GPU); }
- // For convenience, check that input files can be opened, and raise an
- // exception that boost will send to Python if not (caffe could still crash
- // later if the input files are disturbed before they are actually used, but
- // this saves frustration in most cases).
- static void CheckFile(const string& filename) {
- std::ifstream f(filename.c_str());
- if (!f.good()) {
- f.close();
- throw std::runtime_error("Could not open file " + filename);
- }
- f.close();
- }
- void CheckContiguousArray(PyArrayObject* arr, string name,
- int channels, int height, int width) {
- if (!(PyArray_FLAGS(arr) & NPY_ARRAY_C_CONTIGUOUS)) {
- throw std::runtime_error(name + " must be C contiguous");
- }
- if (PyArray_NDIM(arr) != 4) {
- throw std::runtime_error(name + " must be 4-d");
- }
- if (PyArray_TYPE(arr) != NPY_FLOAT32) {
- throw std::runtime_error(name + " must be float32");
- }
- if (PyArray_DIMS(arr)[1] != channels) {
- throw std::runtime_error(name + " has wrong number of channels");
- }
- if (PyArray_DIMS(arr)[2] != height) {
- throw std::runtime_error(name + " has wrong height");
- }
- if (PyArray_DIMS(arr)[3] != width) {
- throw std::runtime_error(name + " has wrong width");
- }
- }
- // Net constructor for passing phase as int
- shared_ptr<Net<Dtype> > Net_Init(
- string param_file, int phase) {
- CheckFile(param_file);
- shared_ptr<Net<Dtype> > net(new Net<Dtype>(param_file,
- static_cast<Phase>(phase)));
- return net;
- }
- // Net construct-and-load convenience constructor
- shared_ptr<Net<Dtype> > Net_Init_Load(
- string param_file, string pretrained_param_file, int phase) {
- CheckFile(param_file);
- CheckFile(pretrained_param_file);
- shared_ptr<Net<Dtype> > net(new Net<Dtype>(param_file,
- static_cast<Phase>(phase)));
- net->CopyTrainedLayersFrom(pretrained_param_file);
- return net;
- }
- void Net_Save(const Net<Dtype>& net, string filename) {
- NetParameter net_param;
- net.ToProto(&net_param, false);
- WriteProtoToBinaryFile(net_param, filename.c_str());
- }
- void Net_SetInputArrays(Net<Dtype>* net, bp::object data_obj,
- bp::object labels_obj) {
- // check that this network has an input MemoryDataLayer
- shared_ptr<MemoryDataLayer<Dtype> > md_layer =
- boost::dynamic_pointer_cast<MemoryDataLayer<Dtype> >(net->layers()[0]);
- if (!md_layer) {
- throw std::runtime_error("set_input_arrays may only be called if the"
- " first layer is a MemoryDataLayer");
- }
- // check that we were passed appropriately-sized contiguous memory
- PyArrayObject* data_arr =
- reinterpret_cast<PyArrayObject*>(data_obj.ptr());
- PyArrayObject* labels_arr =
- reinterpret_cast<PyArrayObject*>(labels_obj.ptr());
- CheckContiguousArray(data_arr, "data array", md_layer->channels(),
- md_layer->height(), md_layer->width());
- CheckContiguousArray(labels_arr, "labels array", 1, 1, 1);
- if (PyArray_DIMS(data_arr)[0] != PyArray_DIMS(labels_arr)[0]) {
- throw std::runtime_error("data and labels must have the same first"
- " dimension");
- }
- if (PyArray_DIMS(data_arr)[0] % md_layer->batch_size() != 0) {
- throw std::runtime_error("first dimensions of input arrays must be a"
- " multiple of batch size");
- }
- md_layer->Reset(static_cast<Dtype*>(PyArray_DATA(data_arr)),
- static_cast<Dtype*>(PyArray_DATA(labels_arr)),
- PyArray_DIMS(data_arr)[0]);
- }
- Solver<Dtype>* GetSolverFromFile(const string& filename) {
- SolverParameter param;
- ReadSolverParamsFromTextFileOrDie(filename, ¶m);
- return SolverRegistry<Dtype>::CreateSolver(param);
- }
- struct NdarrayConverterGenerator {
- template <typename T> struct apply;
- };
- template <>
- struct NdarrayConverterGenerator::apply<Dtype*> {
- struct type {
- PyObject* operator() (Dtype* data) const {
- // Just store the data pointer, and add the shape information in postcall.
- return PyArray_SimpleNewFromData(0, NULL, NPY_DTYPE, data);
- }
- const PyTypeObject* get_pytype() {
- return &PyArray_Type;
- }
- };
- };
- struct NdarrayCallPolicies : public bp::default_call_policies {
- typedef NdarrayConverterGenerator result_converter;
- PyObject* postcall(PyObject* pyargs, PyObject* result) {
- bp::object pyblob = bp::extract<bp::tuple>(pyargs)()[0];
- shared_ptr<Blob<Dtype> > blob =
- bp::extract<shared_ptr<Blob<Dtype> > >(pyblob);
- // Free the temporary pointer-holding array, and construct a new one with
- // the shape information from the blob.
- void* data = PyArray_DATA(reinterpret_cast<PyArrayObject*>(result));
- Py_DECREF(result);
- const int num_axes = blob->num_axes();
- vector<npy_intp> dims(blob->shape().begin(), blob->shape().end());
- PyObject *arr_obj = PyArray_SimpleNewFromData(num_axes, dims.data(),
- NPY_FLOAT32, data);
- // SetBaseObject steals a ref, so we need to INCREF.
- Py_INCREF(pyblob.ptr());
- PyArray_SetBaseObject(reinterpret_cast<PyArrayObject*>(arr_obj),
- pyblob.ptr());
- return arr_obj;
- }
- };
- bp::object Blob_Reshape(bp::tuple args, bp::dict kwargs) {
- if (bp::len(kwargs) > 0) {
- throw std::runtime_error("Blob.reshape takes no kwargs");
- }
- Blob<Dtype>* self = bp::extract<Blob<Dtype>*>(args[0]);
- vector<int> shape(bp::len(args) - 1);
- for (int i = 1; i < bp::len(args); ++i) {
- shape[i - 1] = bp::extract<int>(args[i]);
- }
- self->Reshape(shape);
- // We need to explicitly return None to use bp::raw_function.
- return bp::object();
- }
- bp::object BlobVec_add_blob(bp::tuple args, bp::dict kwargs) {
- if (bp::len(kwargs) > 0) {
- throw std::runtime_error("BlobVec.add_blob takes no kwargs");
- }
- typedef vector<shared_ptr<Blob<Dtype> > > BlobVec;
- BlobVec* self = bp::extract<BlobVec*>(args[0]);
- vector<int> shape(bp::len(args) - 1);
- for (int i = 1; i < bp::len(args); ++i) {
- shape[i - 1] = bp::extract<int>(args[i]);
- }
- self->push_back(shared_ptr<Blob<Dtype> >(new Blob<Dtype>(shape)));
- // We need to explicitly return None to use bp::raw_function.
- return bp::object();
- }
- BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(SolveOverloads, Solve, 0, 1);
- BOOST_PYTHON_MODULE(_caffe) {
- // below, we prepend an underscore to methods that will be replaced
- // in Python
- bp::scope().attr("__version__") = AS_STRING(CAFFE_VERSION);
- // Caffe utility functions
- bp::def("set_mode_cpu", &set_mode_cpu);
- bp::def("set_mode_gpu", &set_mode_gpu);
- bp::def("set_device", &Caffe::SetDevice);
- bp::def("set_random_seed", &Caffe::set_random_seed);
- bp::def("layer_type_list", &LayerRegistry<Dtype>::LayerTypeList);
- bp::enum_<Phase>("Phase")
- .value("TRAIN", caffe::TRAIN)
- .value("TEST", caffe::TEST)
- .export_values();
- bp::class_<Net<Dtype>, shared_ptr<Net<Dtype> >, boost::noncopyable >("Net",
- bp::no_init)
- .def("__init__", bp::make_constructor(&Net_Init))
- .def("__init__", bp::make_constructor(&Net_Init_Load))
- .def("_forward", &Net<Dtype>::ForwardFromTo)
- .def("_backward", &Net<Dtype>::BackwardFromTo)
- .def("reshape", &Net<Dtype>::Reshape)
- // The cast is to select a particular overload.
- .def("copy_from", static_cast<void (Net<Dtype>::*)(const string)>(
- &Net<Dtype>::CopyTrainedLayersFrom))
- .def("share_with", &Net<Dtype>::ShareTrainedLayersWith)
- .add_property("_blob_loss_weights", bp::make_function(
- &Net<Dtype>::blob_loss_weights, bp::return_internal_reference<>()))
- .def("_bottom_ids", bp::make_function(&Net<Dtype>::bottom_ids,
- bp::return_value_policy<bp::copy_const_reference>()))
- .def("_top_ids", bp::make_function(&Net<Dtype>::top_ids,
- bp::return_value_policy<bp::copy_const_reference>()))
- .add_property("_blobs", bp::make_function(&Net<Dtype>::blobs,
- bp::return_internal_reference<>()))
- .add_property("layers", bp::make_function(&Net<Dtype>::layers,
- bp::return_internal_reference<>()))
- .add_property("_blob_names", bp::make_function(&Net<Dtype>::blob_names,
- bp::return_value_policy<bp::copy_const_reference>()))
- .add_property("_layer_names", bp::make_function(&Net<Dtype>::layer_names,
- bp::return_value_policy<bp::copy_const_reference>()))
- .add_property("_inputs", bp::make_function(&Net<Dtype>::input_blob_indices,
- bp::return_value_policy<bp::copy_const_reference>()))
- .add_property("_outputs",
- bp::make_function(&Net<Dtype>::output_blob_indices,
- bp::return_value_policy<bp::copy_const_reference>()))
- .def("_set_input_arrays", &Net_SetInputArrays,
- bp::with_custodian_and_ward<1, 2, bp::with_custodian_and_ward<1, 3> >())
- .def("save", &Net_Save);
- bp::class_<Blob<Dtype>, shared_ptr<Blob<Dtype> >, boost::noncopyable>(
- "Blob", bp::no_init)
- .add_property("shape",
- bp::make_function(
- static_cast<const vector<int>& (Blob<Dtype>::*)() const>(
- &Blob<Dtype>::shape),
- bp::return_value_policy<bp::copy_const_reference>()))
- .add_property("num", &Blob<Dtype>::num)
- .add_property("channels", &Blob<Dtype>::channels)
- .add_property("height", &Blob<Dtype>::height)
- .add_property("width", &Blob<Dtype>::width)
- .add_property("count", static_cast<int (Blob<Dtype>::*)() const>(
- &Blob<Dtype>::count))
- .def("reshape", bp::raw_function(&Blob_Reshape))
- .add_property("data", bp::make_function(&Blob<Dtype>::mutable_cpu_data,
- NdarrayCallPolicies()))
- .add_property("diff", bp::make_function(&Blob<Dtype>::mutable_cpu_diff,
- NdarrayCallPolicies()));
- bp::class_<Layer<Dtype>, shared_ptr<PythonLayer<Dtype> >,
- boost::noncopyable>("Layer", bp::init<const LayerParameter&>())
- .add_property("blobs", bp::make_function(&Layer<Dtype>::blobs,
- bp::return_internal_reference<>()))
- .def("setup", &Layer<Dtype>::LayerSetUp)
- .def("reshape", &Layer<Dtype>::Reshape)
- .add_property("phase", bp::make_function(&Layer<Dtype>::phase))
- .add_property("type", bp::make_function(&Layer<Dtype>::type));
- bp::register_ptr_to_python<shared_ptr<Layer<Dtype> > >();
- bp::class_<LayerParameter>("LayerParameter", bp::no_init);
- bp::class_<Solver<Dtype>, shared_ptr<Solver<Dtype> >, boost::noncopyable>(
- "Solver", bp::no_init)
- .add_property("net", &Solver<Dtype>::net)
- .add_property("test_nets", bp::make_function(&Solver<Dtype>::test_nets,
- bp::return_internal_reference<>()))
- .add_property("iter", &Solver<Dtype>::iter)
- .def("solve", static_cast<void (Solver<Dtype>::*)(const char*)>(
- &Solver<Dtype>::Solve), SolveOverloads())
- .def("step", &Solver<Dtype>::Step)
- .def("restore", &Solver<Dtype>::Restore)
- .def("snapshot", &Solver<Dtype>::Snapshot);
- bp::class_<SGDSolver<Dtype>, bp::bases<Solver<Dtype> >,
- shared_ptr<SGDSolver<Dtype> >, boost::noncopyable>(
- "SGDSolver", bp::init<string>());
- bp::class_<NesterovSolver<Dtype>, bp::bases<Solver<Dtype> >,
- shared_ptr<NesterovSolver<Dtype> >, boost::noncopyable>(
- "NesterovSolver", bp::init<string>());
- bp::class_<AdaGradSolver<Dtype>, bp::bases<Solver<Dtype> >,
- shared_ptr<AdaGradSolver<Dtype> >, boost::noncopyable>(
- "AdaGradSolver", bp::init<string>());
- bp::class_<RMSPropSolver<Dtype>, bp::bases<Solver<Dtype> >,
- shared_ptr<RMSPropSolver<Dtype> >, boost::noncopyable>(
- "RMSPropSolver", bp::init<string>());
- bp::class_<AdaDeltaSolver<Dtype>, bp::bases<Solver<Dtype> >,
- shared_ptr<AdaDeltaSolver<Dtype> >, boost::noncopyable>(
- "AdaDeltaSolver", bp::init<string>());
- bp::class_<AdamSolver<Dtype>, bp::bases<Solver<Dtype> >,
- shared_ptr<AdamSolver<Dtype> >, boost::noncopyable>(
- "AdamSolver", bp::init<string>());
- bp::def("get_solver", &GetSolverFromFile,
- bp::return_value_policy<bp::manage_new_object>());
- // vector wrappers for all the vector types we use
- bp::class_<vector<shared_ptr<Blob<Dtype> > > >("BlobVec")
- .def(bp::vector_indexing_suite<vector<shared_ptr<Blob<Dtype> > >, true>())
- .def("add_blob", bp::raw_function(&BlobVec_add_blob));
- bp::class_<vector<Blob<Dtype>*> >("RawBlobVec")
- .def(bp::vector_indexing_suite<vector<Blob<Dtype>*>, true>());
- bp::class_<vector<shared_ptr<Layer<Dtype> > > >("LayerVec")
- .def(bp::vector_indexing_suite<vector<shared_ptr<Layer<Dtype> > >, true>());
- bp::class_<vector<string> >("StringVec")
- .def(bp::vector_indexing_suite<vector<string> >());
- bp::class_<vector<int> >("IntVec")
- .def(bp::vector_indexing_suite<vector<int> >());
- bp::class_<vector<Dtype> >("DtypeVec")
- .def(bp::vector_indexing_suite<vector<Dtype> >());
- bp::class_<vector<shared_ptr<Net<Dtype> > > >("NetVec")
- .def(bp::vector_indexing_suite<vector<shared_ptr<Net<Dtype> > >, true>());
- bp::class_<vector<bool> >("BoolVec")
- .def(bp::vector_indexing_suite<vector<bool> >());
- // boost python expects a void (missing) return value, while import_array
- // returns NULL for python3. import_array1() forces a void return value.
- import_array1();
- }
- } // namespace caffe
|