123456789101112131415161718192021222324252627282930313233 |
- # --------------------------------------------------------
- # Faster R-CNN
- # Copyright (c) 2015 Microsoft
- # Licensed under The MIT License [see LICENSE for details]
- # Written by Ross Girshick
- # --------------------------------------------------------
- import numpy as np
- cimport numpy as np
- assert sizeof(int) == sizeof(np.int32_t)
- cdef extern from "gpu_nms.hpp":
- void _nms(np.int32_t*, int*, np.float32_t*, int, int, float, int)
- def gpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh,
- np.int32_t device_id=0):
- cdef int boxes_num = dets.shape[0]
- cdef int boxes_dim = dets.shape[1]
- cdef int num_out
- cdef np.ndarray[np.int32_t, ndim=1] \
- keep = np.zeros(boxes_num, dtype=np.int32)
- cdef np.ndarray[np.float32_t, ndim=1] \
- scores = dets[:, 4]
- #cdef np.ndarray[np.int_t, ndim=1] \ // 20160601, by MrX
- # order = scores.argsort()[::-1]
- cdef np.ndarray[np.intp_t, ndim=1] \
- order = scores.argsort()[::-1]
- cdef np.ndarray[np.float32_t, ndim=2] \
- sorted_dets = dets[order, :]
- _nms(&keep[0], &num_out, &sorted_dets[0, 0], boxes_num, boxes_dim, thresh, device_id)
- keep = keep[:num_out]
- return list(order[keep])
|