using ImageMagick; using OpenCvSharp; using PaintDotNet.Base; using System; using System.Collections.Generic; namespace PaintDotNet.Adjust { /// /// 图像平滑 /// public class SmoothIntent { /// /// 西格玛 /// 目前使用的是opencv的加权中值滤波 /// /// /// public static Mat SigemaFunction(Mat mat, List lists) { //半径 int radius = 1; //西格玛值 double sigma = 25.5; foreach (Args args in lists) { switch (args.key) { case "KernelSize": radius = int.Parse(args.Value.ToString()); break; case "Sigma": sigma = double.Parse(args.Value.ToString()); break; } } bool isFourChannels = false; if (mat.Channels() == 4) { Cv2.CvtColor(mat, mat, OpenCvSharp.ColorConversionCodes.BGRA2BGR); isFourChannels = true; } //第四个参数是过滤内核的半径,正整数 范围:3-255 //第五个参数是西格玛值,默认25.5 范围:0-127(Filter range standard deviation for the joint image.) OpenCvSharp.XImgProc.CvXImgProc.WeightedMedianFilter(mat, mat, mat, radius, sigma); if (isFourChannels) { Cv2.CvtColor(mat, mat, OpenCvSharp.ColorConversionCodes.BGR2BGRA); } return mat; } /// /// 各向异性高斯滤波 /// /// /// public static Mat GaussianFiltering(Mat mat, List lists) { double sigmax = 0.0; double sigmay = 0.0; foreach (Args args in lists) { switch (args.key) { case "SigmaX": sigmax = double.Parse(args.Value.ToString()); break; case "SigmaY": sigmay = double.Parse(args.Value.ToString()); break; } } Cv2.GaussianBlur(mat, mat, new Size(0, 0), sigmax, sigmay); return mat; } /// /// 低通滤波 /// 参考 https://www.cnblogs.com/zx-zhang/p/10999617.html /// /// /// public static Mat LowPassFiltering(Mat mat, List lists) { int KernelSizeX = 3; int KernelSizeY = 3; int Count = 1; foreach (Args args in lists) { switch (args.key) { case "KernelSizeX": KernelSizeX = int.Parse(args.Value.ToString()); break; case "KernelSizeY": KernelSizeY = int.Parse(args.Value.ToString()); break; case "Count": Count = int.Parse(args.Value.ToString()); break; } } //构造kernel Mat mx = Cv2.GetGaussianKernel(KernelSizeX, KernelSizeX); Mat my = Cv2.GetGaussianKernel(KernelSizeY, KernelSizeY); Mat dst = new Mat(); mat.CopyTo(dst); for (int i = 0; i < Count; i++) { Cv2.SepFilter2D(dst, dst, mat.Type(), mx, my); } return dst; } /// /// 中值滤波 /// /// /// public static Mat MedianFiltering(Mat mat, List lists) { int ksize = 3; foreach (Args args in lists) { switch (args.key) { case "KernelSize": ksize = int.Parse(args.Value.ToString()); break; } } Cv2.MedianBlur(mat, mat, ksize); return mat; } /// /// 高斯模糊 /// /// /// public static Mat GaussianBlur(Mat mat, List lists) { int ksize = 11; foreach (Args args in lists) { switch (args.key) { case "KernelSize": ksize = int.Parse(args.Value.ToString()); break; } } Cv2.GaussianBlur(mat, mat, new Size(ksize, ksize), 0); return mat; } /// /// 双边滤波 /// /// /// public static Mat BilateralFiltering(Mat mat, List lists) { Mat dst = new Mat(); //像素邻域的直径 int diameter = 0; //颜色空间过滤器的sigma值 double sigmaColor = 0.0; //坐标空间中滤波器的sigma值 double sigmaSpace = 0.0; foreach (Args args in lists) { switch (args.key) { case "Diameter": diameter = int.Parse(args.Value.ToString()); break; case "SigmaColor": sigmaColor = int.Parse(args.Value.ToString()); break; case "SigmaSpace": sigmaSpace = int.Parse(args.Value.ToString()); break; } } OpenCvSharp.Cv2.CvtColor(mat, mat, OpenCvSharp.ColorConversionCodes.BGRA2BGR); Cv2.BilateralFilter(mat, dst, diameter, sigmaColor, sigmaSpace); return dst; } /// /// 小波降噪 /// opencv没有提供小波相关函数 /// MagickImage的小波降噪源码比较复杂,回头考虑是否扒一份 /// 均值滤波 https://blog.csdn.net/dcrmg/article/details/78817985 /// /// /// public static Mat WaveletDenoising(Mat mat, List lists) { int ksize = 3; foreach (Args args in lists) { switch (args.key) { case "KernelSize": ksize = int.Parse(args.Value.ToString()); break; } } //Cv2.FastNlMeansDenoisingColored(mat, mat); Cv2.Blur(mat, mat, new Size(ksize, ksize)); return mat; /*CLAHE clahe = Cv2.CreateCLAHE(8, null); mat = mat.CvtColor(ColorConversionCodes.BGR2GRAY); clahe.Apply(mat, mat); return mat;*/ //MagickImage image = new MagickImage(OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat)); //image.WaveletDenoise((byte)threshold); //return OpenCvSharp.Extensions.BitmapConverter.ToMat(image.ToBitmap()); } } }