123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- using ImageMagick;
- using OpenCvSharp;
- using PaintDotNet.Base;
- using System;
- using System.Collections.Generic;
- namespace PaintDotNet.Adjust
- {
- /// <summary>
- /// 图像平滑
- /// </summary>
- public class SmoothIntent
- {
- /// <summary>
- /// 西格玛
- /// 目前使用的是opencv的加权中值滤波
- /// </summary>
- /// <param name="mat"></param>
- /// <returns></returns>
- public static Mat SigemaFunction(Mat mat, List<Args> lists)
- {
- //半径
- int radius = 1;
- //西格玛值
- double sigma = 25.5;
- foreach (Args args in lists)
- {
- switch (args.key)
- {
- case "KernelSize":
- radius = int.Parse(args.Value.ToString());
- break;
- case "Sigma":
- sigma = double.Parse(args.Value.ToString());
- break;
- }
- }
- bool isFourChannels = false;
- if (mat.Channels() == 4)
- {
- Cv2.CvtColor(mat, mat, OpenCvSharp.ColorConversionCodes.BGRA2BGR);
- isFourChannels = true;
- }
- //第四个参数是过滤内核的半径,正整数 范围:3-255
- //第五个参数是西格玛值,默认25.5 范围:0-127(Filter range standard deviation for the joint image.)
- OpenCvSharp.XImgProc.CvXImgProc.WeightedMedianFilter(mat, mat, mat, radius, sigma);
- if (isFourChannels)
- {
- Cv2.CvtColor(mat, mat, OpenCvSharp.ColorConversionCodes.BGR2BGRA);
- }
- return mat;
- }
- /// <summary>
- /// 各向异性高斯滤波
- /// </summary>
- /// <param name="mat"></param>
- /// <returns></returns>
- public static Mat GaussianFiltering(Mat mat, List<Args> lists)
- {
- double sigmax = 0.0;
- double sigmay = 0.0;
- foreach (Args args in lists)
- {
- switch (args.key)
- {
- case "SigmaX":
- sigmax = double.Parse(args.Value.ToString());
- break;
- case "SigmaY":
- sigmay = double.Parse(args.Value.ToString());
- break;
- }
- }
- Cv2.GaussianBlur(mat, mat, new Size(0, 0), sigmax, sigmay);
- return mat;
- }
- /// <summary>
- /// 低通滤波
- /// 参考 https://www.cnblogs.com/zx-zhang/p/10999617.html
- /// </summary>
- /// <param name="mat"></param>
- /// <returns></returns>
- public static Mat LowPassFiltering(Mat mat, List<Args> lists)
- {
- int KernelSizeX = 3;
- int KernelSizeY = 3;
- int Count = 1;
- foreach (Args args in lists)
- {
- switch (args.key)
- {
- case "KernelSizeX":
- KernelSizeX = int.Parse(args.Value.ToString());
- break;
- case "KernelSizeY":
- KernelSizeY = int.Parse(args.Value.ToString());
- break;
- case "Count":
- Count = int.Parse(args.Value.ToString());
- break;
- }
- }
- //构造kernel
- Mat mx = Cv2.GetGaussianKernel(KernelSizeX, KernelSizeX);
- Mat my = Cv2.GetGaussianKernel(KernelSizeY, KernelSizeY);
- Mat dst = new Mat();
- mat.CopyTo(dst);
- for (int i = 0; i < Count; i++)
- {
- Cv2.SepFilter2D(dst, dst, mat.Type(), mx, my);
- }
- return dst;
- }
- /// <summary>
- /// 中值滤波
- /// </summary>
- /// <param name="mat"></param>
- /// <returns></returns>
- public static Mat MedianFiltering(Mat mat, List<Args> lists)
- {
- int ksize = 3;
- foreach (Args args in lists)
- {
- switch (args.key)
- {
- case "KernelSize":
- ksize = int.Parse(args.Value.ToString());
- break;
- }
- }
- Cv2.MedianBlur(mat, mat, ksize);
- return mat;
- }
- /// <summary>
- /// 高斯模糊
- /// </summary>
- /// <param name="mat"></param>
- /// <returns></returns>
- public static Mat GaussianBlur(Mat mat, List<Args> lists)
- {
- int ksize = 11;
- foreach (Args args in lists)
- {
- switch (args.key)
- {
- case "KernelSize":
- ksize = int.Parse(args.Value.ToString());
- break;
- }
- }
- Cv2.GaussianBlur(mat, mat, new Size(ksize, ksize), 0);
- return mat;
- }
- /// <summary>
- /// 双边滤波
- /// </summary>
- /// <param name="mat"></param>
- /// <returns></returns>
- public static Mat BilateralFiltering(Mat mat, List<Args> lists)
- {
- Mat dst = new Mat();
- //像素邻域的直径
- int diameter = 0;
- //颜色空间过滤器的sigma值
- double sigmaColor = 0.0;
- //坐标空间中滤波器的sigma值
- double sigmaSpace = 0.0;
- foreach (Args args in lists)
- {
- switch (args.key)
- {
- case "Diameter":
- diameter = int.Parse(args.Value.ToString());
- break;
- case "SigmaColor":
- sigmaColor = int.Parse(args.Value.ToString());
- break;
- case "SigmaSpace":
- sigmaSpace = int.Parse(args.Value.ToString());
- break;
- }
- }
- OpenCvSharp.Cv2.CvtColor(mat, mat, OpenCvSharp.ColorConversionCodes.BGRA2BGR);
- Cv2.BilateralFilter(mat, dst, diameter, sigmaColor, sigmaSpace);
- return dst;
- }
- /// <summary>
- /// 小波降噪
- /// opencv没有提供小波相关函数
- /// MagickImage的小波降噪源码比较复杂,回头考虑是否扒一份
- /// 均值滤波 https://blog.csdn.net/dcrmg/article/details/78817985
- /// </summary>
- /// <param name="mat"></param>
- /// <returns></returns>
- public static Mat WaveletDenoising(Mat mat, List<Args> lists)
- {
- int ksize = 3;
- foreach (Args args in lists)
- {
- switch (args.key)
- {
- case "KernelSize":
- ksize = int.Parse(args.Value.ToString());
- break;
- }
- }
- //Cv2.FastNlMeansDenoisingColored(mat, mat);
-
- Cv2.Blur(mat, mat, new Size(ksize, ksize));
- return mat;
- /*CLAHE clahe = Cv2.CreateCLAHE(8, null);
- mat = mat.CvtColor(ColorConversionCodes.BGR2GRAY);
- clahe.Apply(mat, mat);
- return mat;*/
- //MagickImage image = new MagickImage(OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat));
- //image.WaveletDenoise((byte)threshold);
- //return OpenCvSharp.Extensions.BitmapConverter.ToMat(image.ToBitmap());
- }
- }
- }
|