SmoothIntent.cs 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237
  1. using ImageMagick;
  2. using OpenCvSharp;
  3. using PaintDotNet.Base;
  4. using System;
  5. using System.Collections.Generic;
  6. namespace PaintDotNet.Adjust
  7. {
  8. /// <summary>
  9. /// 图像平滑
  10. /// </summary>
  11. public class SmoothIntent
  12. {
  13. /// <summary>
  14. /// 西格玛
  15. /// 目前使用的是opencv的加权中值滤波
  16. /// </summary>
  17. /// <param name="mat"></param>
  18. /// <returns></returns>
  19. public static Mat SigemaFunction(Mat mat, List<Args> lists)
  20. {
  21. //半径
  22. int radius = 1;
  23. //西格玛值
  24. double sigma = 25.5;
  25. foreach (Args args in lists)
  26. {
  27. switch (args.key)
  28. {
  29. case "KernelSize":
  30. radius = int.Parse(args.Value.ToString());
  31. break;
  32. case "Sigma":
  33. sigma = double.Parse(args.Value.ToString());
  34. break;
  35. }
  36. }
  37. bool isFourChannels = false;
  38. if (mat.Channels() == 4)
  39. {
  40. Cv2.CvtColor(mat, mat, OpenCvSharp.ColorConversionCodes.BGRA2BGR);
  41. isFourChannels = true;
  42. }
  43. //第四个参数是过滤内核的半径,正整数 范围:3-255
  44. //第五个参数是西格玛值,默认25.5 范围:0-127(Filter range standard deviation for the joint image.)
  45. OpenCvSharp.XImgProc.CvXImgProc.WeightedMedianFilter(mat, mat, mat, radius, sigma);
  46. if (isFourChannels)
  47. {
  48. Cv2.CvtColor(mat, mat, OpenCvSharp.ColorConversionCodes.BGR2BGRA);
  49. }
  50. return mat;
  51. }
  52. /// <summary>
  53. /// 各向异性高斯滤波
  54. /// </summary>
  55. /// <param name="mat"></param>
  56. /// <returns></returns>
  57. public static Mat GaussianFiltering(Mat mat, List<Args> lists)
  58. {
  59. double sigmax = 0.0;
  60. double sigmay = 0.0;
  61. foreach (Args args in lists)
  62. {
  63. switch (args.key)
  64. {
  65. case "SigmaX":
  66. sigmax = double.Parse(args.Value.ToString());
  67. break;
  68. case "SigmaY":
  69. sigmay = double.Parse(args.Value.ToString());
  70. break;
  71. }
  72. }
  73. Cv2.GaussianBlur(mat, mat, new Size(0, 0), sigmax, sigmay);
  74. return mat;
  75. }
  76. /// <summary>
  77. /// 低通滤波
  78. /// 参考 https://www.cnblogs.com/zx-zhang/p/10999617.html
  79. /// </summary>
  80. /// <param name="mat"></param>
  81. /// <returns></returns>
  82. public static Mat LowPassFiltering(Mat mat, List<Args> lists)
  83. {
  84. int KernelSizeX = 3;
  85. int KernelSizeY = 3;
  86. int Count = 1;
  87. foreach (Args args in lists)
  88. {
  89. switch (args.key)
  90. {
  91. case "KernelSizeX":
  92. KernelSizeX = int.Parse(args.Value.ToString());
  93. break;
  94. case "KernelSizeY":
  95. KernelSizeY = int.Parse(args.Value.ToString());
  96. break;
  97. case "Count":
  98. Count = int.Parse(args.Value.ToString());
  99. break;
  100. }
  101. }
  102. //构造kernel
  103. Mat mx = Cv2.GetGaussianKernel(KernelSizeX, KernelSizeX);
  104. Mat my = Cv2.GetGaussianKernel(KernelSizeY, KernelSizeY);
  105. Mat dst = new Mat();
  106. mat.CopyTo(dst);
  107. for (int i = 0; i < Count; i++)
  108. {
  109. Cv2.SepFilter2D(dst, dst, mat.Type(), mx, my);
  110. }
  111. return dst;
  112. }
  113. /// <summary>
  114. /// 中值滤波
  115. /// </summary>
  116. /// <param name="mat"></param>
  117. /// <returns></returns>
  118. public static Mat MedianFiltering(Mat mat, List<Args> lists)
  119. {
  120. int ksize = 3;
  121. foreach (Args args in lists)
  122. {
  123. switch (args.key)
  124. {
  125. case "KernelSize":
  126. ksize = int.Parse(args.Value.ToString());
  127. break;
  128. }
  129. }
  130. Cv2.MedianBlur(mat, mat, ksize);
  131. return mat;
  132. }
  133. /// <summary>
  134. /// 高斯模糊
  135. /// </summary>
  136. /// <param name="mat"></param>
  137. /// <returns></returns>
  138. public static Mat GaussianBlur(Mat mat, List<Args> lists)
  139. {
  140. int ksize = 11;
  141. foreach (Args args in lists)
  142. {
  143. switch (args.key)
  144. {
  145. case "KernelSize":
  146. ksize = int.Parse(args.Value.ToString());
  147. break;
  148. }
  149. }
  150. Cv2.GaussianBlur(mat, mat, new Size(ksize, ksize), 0);
  151. return mat;
  152. }
  153. /// <summary>
  154. /// 双边滤波
  155. /// </summary>
  156. /// <param name="mat"></param>
  157. /// <returns></returns>
  158. public static Mat BilateralFiltering(Mat mat, List<Args> lists)
  159. {
  160. Mat dst = new Mat();
  161. //像素邻域的直径
  162. int diameter = 0;
  163. //颜色空间过滤器的sigma值
  164. double sigmaColor = 0.0;
  165. //坐标空间中滤波器的sigma值
  166. double sigmaSpace = 0.0;
  167. foreach (Args args in lists)
  168. {
  169. switch (args.key)
  170. {
  171. case "Diameter":
  172. diameter = int.Parse(args.Value.ToString());
  173. break;
  174. case "SigmaColor":
  175. sigmaColor = int.Parse(args.Value.ToString());
  176. break;
  177. case "SigmaSpace":
  178. sigmaSpace = int.Parse(args.Value.ToString());
  179. break;
  180. }
  181. }
  182. OpenCvSharp.Cv2.CvtColor(mat, mat, OpenCvSharp.ColorConversionCodes.BGRA2BGR);
  183. Cv2.BilateralFilter(mat, dst, diameter, sigmaColor, sigmaSpace);
  184. return dst;
  185. }
  186. /// <summary>
  187. /// 小波降噪
  188. /// opencv没有提供小波相关函数
  189. /// MagickImage的小波降噪源码比较复杂,回头考虑是否扒一份
  190. /// 均值滤波 https://blog.csdn.net/dcrmg/article/details/78817985
  191. /// </summary>
  192. /// <param name="mat"></param>
  193. /// <returns></returns>
  194. public static Mat WaveletDenoising(Mat mat, List<Args> lists)
  195. {
  196. int ksize = 3;
  197. foreach (Args args in lists)
  198. {
  199. switch (args.key)
  200. {
  201. case "KernelSize":
  202. ksize = int.Parse(args.Value.ToString());
  203. break;
  204. }
  205. }
  206. //Cv2.FastNlMeansDenoisingColored(mat, mat);
  207. Cv2.Blur(mat, mat, new Size(ksize, ksize));
  208. return mat;
  209. /*CLAHE clahe = Cv2.CreateCLAHE(8, null);
  210. mat = mat.CvtColor(ColorConversionCodes.BGR2GRAY);
  211. clahe.Apply(mat, mat);
  212. return mat;*/
  213. //MagickImage image = new MagickImage(OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat));
  214. //image.WaveletDenoise((byte)threshold);
  215. //return OpenCvSharp.Extensions.BitmapConverter.ToMat(image.ToBitmap());
  216. }
  217. }
  218. }