using OTSIncAReportApp.DataOperation.DataAccess; using OTSIncAReportApp.DataOperation.Model; using OTSIncAReportApp.SysMgrTools; using OTSIncAReportGraph.Class; using OTSIncAReportGraph.Controls; using System; using System.Collections; using System.Collections.Generic; using System.Data; using System.Diagnostics; using System.Drawing; using System.Drawing.Drawing2D; using System.Linq; namespace OTSIncAReportGraph.OTSIncAReportGraphFuncation { class OTSIncAReportFun { #region 枚举定义 /// /// 样品台X轴方向 /// enum OTS_X_AXIS_DIRECTION { LEFT_TOWARD = 0, RIGHT_TOWARD = 1 } /// /// 样品台Y轴方向 /// enum OTS_Y_AXIS_DIRECTION { UP_TOWARD = 0, DOWN_TOWARD = 1 } #endregion #region 定义变量 private ResultFile resultFile = null; //新版排序图窗体对象 //private Control_DrawDistrbutionSortImage m_Control_DrawdistrbutionsortImage = null; //全局对象,为了能够快速的获取到xray数据,而做为一个临时变量进行保存,使用前应该判断是否为空 public List m_list_OTSField = null; NLog.Logger log; //field的数量 public int m_field_count = 0; //particle的数量 public int m_particle_count = 0; //加载使用的时间 public string m_time_str = ""; //加载使用时间计算时间段2 public string m_time_str2 = ""; //电镜设置对象 public ServiceInterface.SemController m_cfun = null; //是否已经连接到了电镜 public bool m_SEMConnectionState = false; //连接到电镜的ID号 public int m_SEM_ID = 0; //国际化 //Language lan = new Language(); //Hashtable table; #endregion #region 构造函数 /// /// 构造函数,接收新版分布图和排序图的构造函数 /// /// /// public OTSIncAReportFun( ResultFile result) { resultFile = result; m_cfun =new ServiceInterface.SemController(); log = NLog.LogManager.GetCurrentClassLogger(); //table = lan.GetNameTable("OTSIncAReportFun"); } #endregion #region 封装自定义方法 /// /// 通过传入的各field物理坐标列表,和单个field的屏幕分辨率,及单个的field的物理坐标,来获取当前field在整个image中的屏幕像素坐标偏移,并且是OTS向上为正做了Y轴相反运算 /// /// /// /// /// /// /// public Point GetFieldPhysicsConvertToScreen(List in_list_point, int in_screen_width, int in_screen_height, Point in_physics_point) { //先确定单个物理坐标的宽和高 Rectangle rect_onefield_wl = GetOneFieldWidthAndHeight(in_list_point); //找出最小的x,y用来做偏移运算 int i_offset_x = 1000000000; int i_offset_y = 1000000000; //先取出最小的x,y for (int i = 0; i < in_list_point.Count; i++) { if (i_offset_x > in_list_point[i].X) { i_offset_x = in_list_point[i].X; } if (i_offset_y > in_list_point[i].Y) { i_offset_y = in_list_point[i].Y; } } List list_point = new List(); //将各Field的OTS坐标与屏幕左上角的坐标进行相减,取出与屏幕左上角的偏移量,也就是取出了屏幕坐标 int index = 0; for (int i = 0; i < in_list_point.Count; i++) { list_point.Add(new Point(in_list_point[i].X - i_offset_x, in_list_point[i].Y - i_offset_y)); //根据物理坐标的对应关系,找到了在数组中的位置,下面将用该位置对应得出像素坐标的位置,并进行返回 if (in_list_point[i] == in_physics_point) { index = i; } } //再将物理像素list_point换算成像素list_point,再用index定位 for (int i = 0; i < list_point.Count; i++) { //将单个物理像素变换成屏幕像素分辨率 int i_bs_x = 0; int i_bs_y = 0; if (rect_onefield_wl.Width != 0) i_bs_x = list_point[i].X / rect_onefield_wl.Width; if (rect_onefield_wl.Height != 0) i_bs_y = list_point[i].Y / rect_onefield_wl.Height; //再将屏幕像素分辨率按倍数赋值给list_point //考虑到OTS坐标整体是Y轴向上为正,所以这里需要根据总高,减y轴就是向上为正 list_point[i] = new Point(in_screen_width * i_bs_x, in_screen_height * i_bs_y); } #region Y轴向上为正转换--------------------------------------------------------------------------------------- //但上面由于相减,会出现y轴为负的情况,所以这里要根据Y轴是否出现负值,再次做偏移运算 //找到最小的y轴,也就是 [Y轴偏移量] int i_offset_y_second = 100000000; //找到最大的Y轴,用于做相反运算,Y轴向上 int i_screen_y = -100000000; for (int i = 0; i < list_point.Count; i++) { if (i_offset_y_second > list_point[i].Y) { i_offset_y_second = list_point[i].Y;//这个偏移Y就是最小的Y,可能是负数,也可能是0 } if (i_screen_y < list_point[i].Y) { i_screen_y = list_point[i].Y; } } //对Y轴进行反转,OTS坐标向屏幕坐标转换 for (int i = 0; i < list_point.Count; i++) { list_point[i] = new Point(list_point[i].X, i_screen_y - list_point[i].Y); } //再将所有的Field与这个 [Y轴偏移量] 相加,防止OTS向上为正转换屏幕坐标,造成的Y轴为负的情况 for (int i = 0; i < list_point.Count; i++) { list_point[i] = new Point(list_point[i].X, list_point[i].Y + Math.Abs(i_offset_y_second)); } #endregion Y轴向上为正转换结束-------------------------------------------------------------------------- return list_point[index]; } /// /// 根据type,从三种分类的分析库中提取当前分析物的颜色 /// /// /// /// public Color GetColorBySTDTypeIDForBSEAndSorImage(string in_cotssampleclr, int in_stdtypeid) { Color ret_c = new Color(); if (in_stdtypeid < 1000) { OTSSysSTDMgrClass osc = new OTSSysSTDMgrClass(); //小于1000,使用系统默认分类 ret_c = osc.GetColorByEnum(in_stdtypeid); } else if (in_stdtypeid >= 1000) { //大于等于1000,并且小于10000时,使用用户标准库来分析夹杂物名称 if (!in_cotssampleclr.Contains("#")) { ret_c = DrawFunction.colorHx16toRGB("#" + in_cotssampleclr);//接收必须是#000000的格式 } else { ret_c = DrawFunction.colorHx16toRGB(in_cotssampleclr);//接收必须是#000000的格式 } } return ret_c; } /// /// 计算像素总画面Image大小,及进行物理坐标与分辨率坐标的换算操作 传入物理坐标,及宽高,来 /// /// 传入的物理坐标数组 /// 单个field宽 /// 单个field高 /// public Rectangle ConvertAndGetMaxRect(List in_list_point, int in_width, int in_height) { //首先要能确定下来,单个物理坐标的宽和高-------------------------------- int i_wl_width = 0; int i_wl_height = 0; Rectangle ls_r = GetOneFieldWidthAndHeight(in_list_point); i_wl_width = ls_r.Width; i_wl_height = ls_r.Height; //----------------------------------------------------------------------------- int point_x_min = 10000000; int point_x_max = -10000000; int point_y_min = 10000000; int point_y_max = -10000000; for (int i = 0; i < in_list_point.Count(); i++) { Point ls_point = in_list_point[i]; //取出正数最大x if (ls_point.X > point_x_max) point_x_max = ls_point.X; if (ls_point.Y > point_y_max) point_y_max = ls_point.Y; if (ls_point.X < point_x_min) point_x_min = ls_point.X; if (ls_point.Y < point_y_min) point_y_min = ls_point.Y; } //然后分别用最大值+abs(最小值),就是x,和y轴的总长值 point_x_max = point_x_max - point_x_min; point_y_max = point_y_max - point_y_min; //该算法有个问题,就是不能直观的得到整个范围的大小,要除以倍数再补1能补充缺少的一个field视域********** point_x_max = ((point_x_max / i_wl_width) + 1) * i_wl_width; point_y_max = ((point_y_max / i_wl_height) + 1) * i_wl_height; //将物理宽高,变换成分辨率宽高 if (i_wl_width != 0) point_x_max = (point_x_max / i_wl_width) * in_width; else point_x_max = 0; if (i_wl_height != 0) point_y_max = (point_y_max / i_wl_height) * in_height; else point_y_max = 0; Rectangle ret_rectangle = new Rectangle(0, 0, 0, 0); //判断一下防止出错,只有在有数据的情况下,进行赋值才行 if (in_list_point.Count > 0) { ret_rectangle = new Rectangle(0, 0, point_x_max, point_y_max); } //这样返回是物理坐标的总大小,应该返回像素坐标大小才对 return ret_rectangle; } /// /// 计算单个field的物理大小 传入field的list,还有测量结果管理类对象,在无法计算出单file的物理大小的情况下,到这里取再计算得出 /// /// public Rectangle GetOneFieldWidthAndHeight(List in_list_point) { int i_wl_width_max = -10000000; int i_wl_height_max = -10000000; int i_wl_width_max2 = -10000000; int i_wl_height_max2 = -10000000; //先找出最大的值, for (int i = 0; i < in_list_point.Count(); i++) { if (i_wl_width_max < in_list_point[i].X) i_wl_width_max = in_list_point[i].X; if (i_wl_height_max < in_list_point[i].Y) i_wl_height_max = in_list_point[i].Y; } //再找出第二大的值 for (int i = 0; i < in_list_point.Count(); i++) { if (i_wl_width_max2 < in_list_point[i].X && i_wl_width_max != in_list_point[i].X) i_wl_width_max2 = in_list_point[i].X; if (i_wl_height_max2 < in_list_point[i].Y && i_wl_height_max != in_list_point[i].Y) i_wl_height_max2 = in_list_point[i].Y; } //需要针对第二大的值,获取时进行判断,感觉这里应该如果并未找到第二大的值的情况下,赋于0值,便于以后进行计算 if (i_wl_width_max2 == -10000000) i_wl_width_max2 = 0; if (i_wl_height_max2 == -10000000) i_wl_height_max2 = 0; Rectangle ret_rect = new Rectangle(0, 0, i_wl_width_max - i_wl_width_max2, i_wl_height_max - i_wl_height_max2); //如果最后计算出的宽高有0则重新到测量数据中获取--------------------------------------- if (ret_rect.Width == 0 || ret_rect.Height == 0) { //到参数中去取单个宽 double d_onefilesize_width = Convert.ToDouble(((Dictionary)resultFile.ResultInfo["SEMStageData"])["scanFieldSize"]); //然后再用单个宽去计算出高是多少 double d_onefilesize_height = 0; if (d_onefilesize_width != 0) d_onefilesize_height = (d_onefilesize_width / 4) * 3; ret_rect.Width = (int)d_onefilesize_width; ret_rect.Height = (int)d_onefilesize_height; } ///-----------because all the fields 's height/width=0.75 so here we make an enforce. gsp add at 2019/10/31 ///sometimes the gbfields are not conform to this for the cuting and merging operation. //if (ret_rect.Height / ret_rect.Width != 0.75f) //{ // ret_rect = new Rectangle(ret_rect.X, ret_rect.Y, ret_rect.Width, (int)(ret_rect.Width * 0.75f)); //} return ret_rect; } #endregion #region 电镜操作相关方法 /// /// 连接电镜,分布图使用 /// public void ConnectToSEM() { log.Trace("(Connection_ForDrawDistrbutionImageAndBSE)" + "Connect to SEM"); if (!m_SEMConnectionState) { //和电镜建立通讯连接 m_SEMConnectionState = m_cfun.Connect(); log.Trace("(Connection_ForDrawDistrbutionImageAndBSE)" + "Connect to SEM" + ":--" + m_SEMConnectionState + "---"); } else { log.Trace("(Connection_ForDrawDistrbutionImageAndBSE)" + ":allready connected, state:" + m_SEMConnectionState); //断开电镜连接 } } public void DisConnectSEM() { m_SEMConnectionState = false; m_cfun.DisConnect(); } /// /// 移动电镜到指定的X,Y坐标上,R坐标使用原先的值进行移动 /// /// /// public void MoveSemToPointXY(double in_PositionX, double in_PositionY) { log.Trace("Begin MoveSemToPointXY:(" +in_PositionX.ToString()+","+in_PositionY.ToString()+")"); //首先获取电镜当前的位置,并记录原R值 double ls_PositionX = 0; double ls_PositionY = 0; double ls_PositionR = 0; if (m_SEMConnectionState) { m_cfun.GetSemPositionXY(ref ls_PositionX, ref ls_PositionY, ref ls_PositionR); } else { log.Error("Failed to GetSemPositionXY"); return; } if (m_SEMConnectionState) { m_cfun.MoveSEMToPoint(new Point((int)in_PositionX, (int)in_PositionY), ls_PositionR); } } #endregion #region //--------------------------------------颗粒分布图相关部份--------------------------------------------------------------------- /// /// 传入颗粒的tagid和fieldid,来获取该颗粒下对应的xray数据 /// /// /// /// /// public void GetXrayByParticleTagIDAndFieldID_ForDrawDistrbutionImageAndBSE(int in_clr_tagid, int in_clr_fieldid, out uint[] Search_xray, out uint[] Analysis_xray, out int xray_id, out List list_celementchemistryclr) { Search_xray = new uint[2000]; Analysis_xray = new uint[2000]; xray_id = 0; list_celementchemistryclr = new List(); //防止为空校验判断 if (m_list_OTSField == null) return; Particle particle = m_list_OTSField.Find(x => x.FieldID == in_clr_fieldid).ParticleList.Find(x => x.ParticleId == in_clr_tagid); var tmpPart = new ParticleData(resultFile.FilePath).GetParticleXrayDataByFidAndPid(Convert.ToString(particle.FieldId), Convert.ToString(particle.XrayId)); particle.XRayData = tmpPart.XRayData; if (particle.XrayId > -1) { for (int i = 0; i < 2000; i++) { Analysis_xray[i] = BitConverter.ToUInt32(particle.XRayData, i * 4); } Search_xray = Analysis_xray; xray_id = particle.XrayId; list_celementchemistryclr = particle.ElementList; } } /// /// 传入所有的物理field坐标点,和单个物理field的宽高,返回所有field的左上角位置,和整个field组成的rect大小 /// /// /// /// /// public Rectangle GetWlRectTopLeftAndRect(List in_list_point, int in_width, int in_height) { //分别获取整个rect的xy最小值和最大值 int i_rect_x_min = 100000000; int i_rect_y_min = 100000000; int i_rect_x_max = -100000000; int i_rect_y_max = -100000000; for (int i = 0; i < in_list_point.Count; i++) { if (i_rect_x_min > in_list_point[i].X) i_rect_x_min = in_list_point[i].X; if (i_rect_y_min > in_list_point[i].Y) i_rect_y_min = in_list_point[i].Y; if (i_rect_x_max < in_list_point[i].X) i_rect_x_max = in_list_point[i].X; if (i_rect_y_max < in_list_point[i].Y) i_rect_y_max = in_list_point[i].Y; } Rectangle ret_rect = new Rectangle(i_rect_x_min, i_rect_y_min, i_rect_x_max - i_rect_x_min, i_rect_y_max - i_rect_y_min); return ret_rect; } /// /// 根据Field的ID,来获取Field列表中对应FIeld的OTS 坐标 /// /// /// public Point GetOTSPointByFieldID(List in_list_dfield, int in_fieldid) { Point ret_point = new Point(0, 0); for (int i = 0; i < in_list_dfield.Count; i++) { //这里TagID先代表的是底层返回的ID if (in_list_dfield[i].FieldID == in_fieldid.ToString()) { ret_point = new Point(Convert.ToInt32(in_list_dfield[i].OTS_RECT.X), Convert.ToInt32(in_list_dfield[i].OTS_RECT.Y)); } } return ret_point; } /// /// 将OTS坐标转换为Sem 坐标 /// /// /// public Point ChangeOTSToSemCoord(Point POTSCoord) { //first if m_semstagedata is null to get stage inforation Convert.ToDouble(((Dictionary)resultFile.ResultInfo["SEMStageData"])["scanFieldSize"]); //after obtaining stage info,calc stage point data Point ret_SEM_point = new Point(); // get center point, um long xStart = Convert.ToInt64(((Dictionary)((Dictionary)((Dictionary)resultFile.ResultInfo["SEMStageData"])["Members"])["XAxis"])["start"]); long xEnd = Convert.ToInt64(((Dictionary)((Dictionary)((Dictionary)resultFile.ResultInfo["SEMStageData"])["Members"])["XAxis"])["end"]); long xCenter = (xStart + xEnd) / 2; long yStart = Convert.ToInt64(((Dictionary)((Dictionary)((Dictionary)resultFile.ResultInfo["SEMStageData"])["Members"])["YAxis"])["start"]); long yEnd = Convert.ToInt64(((Dictionary)((Dictionary)((Dictionary)resultFile.ResultInfo["SEMStageData"])["Members"])["YAxis"])["end"]); long yCenter = (yStart + yEnd) / 2; // delte = SEM - OTSa long deltex = xCenter - 0; long deltey = yCenter - 0; int xdir = Convert.ToInt32(((Dictionary)resultFile.ResultInfo["SEMStageData"])["xAxisDir"]); int ydir = Convert.ToInt32(((Dictionary)resultFile.ResultInfo["SEMStageData"])["yAxisDir"]); if (xdir == (int)OTS_X_AXIS_DIRECTION.LEFT_TOWARD) { ret_SEM_point.X = -1 * (POTSCoord.X - Convert.ToInt32(deltex)); } else if (xdir == (int)OTS_X_AXIS_DIRECTION.RIGHT_TOWARD) { ret_SEM_point.X = POTSCoord.X + Convert.ToInt32(deltex); } if (ydir == (int)OTS_Y_AXIS_DIRECTION.UP_TOWARD) { ret_SEM_point.Y = POTSCoord.Y + Convert.ToInt32(deltey); } else if (ydir == (int)OTS_Y_AXIS_DIRECTION.DOWN_TOWARD) { ret_SEM_point.Y = -1 * (POTSCoord.Y - Convert.ToInt32(deltey)); } return ret_SEM_point; } #endregion /// /// 判断该点是否在多边形的范围内 /// /// /// /// public bool WhetherInRange(DParticle Part,/*PointF[] inPoints,*/ Point WhetherPoint) { var rect = Part.Rect; if ((rect.Left < WhetherPoint.X && WhetherPoint.X < rect.Right) && (rect.Top < WhetherPoint.Y && WhetherPoint.Y < rect.Bottom)) { var itm = (BaseObject)Part; PointF[] inPoints = itm.GPath.PathPoints; bool b_inrange = false; GraphicsPath myGraphicsPath = new GraphicsPath(); Region myRegion = new Region(); myGraphicsPath.Reset(); myGraphicsPath.AddPolygon(inPoints); myRegion.MakeEmpty(); myRegion.Union(myGraphicsPath); //返回判断点是否在多边形里 b_inrange = myRegion.IsVisible(WhetherPoint); return b_inrange; } else { return false; } } /// /// 判断该点是否在多边形的范围内的float版本重载 /// /// /// /// public bool WhetherInRange(DParticle Part,/* PointF[] inPoints, */PointF WhetherPoint) { var rect = Part.Rect; if ((rect.Left < WhetherPoint.X && WhetherPoint.X < rect.Right) && (rect.Top < WhetherPoint.Y && WhetherPoint.Y < rect.Bottom)) { var itm = (BaseObject)Part; PointF[] inPoints = itm.GPath.PathPoints; bool b_inrange = false; GraphicsPath myGraphicsPath = new GraphicsPath(); Region myRegion = new Region(); myGraphicsPath.Reset(); myGraphicsPath.AddPolygon(inPoints); myRegion.MakeEmpty(); myRegion.Union(myGraphicsPath); //返回判断点是否在多边形里 b_inrange = myRegion.IsVisible(WhetherPoint); return b_inrange; } else { return false; } } #region //--------------------------------------颗粒排序图相关部份--------------------------------------------------------------------- /// /// 根据传入的fieldid和tagid返回该颗粒的OTS坐标 /// /// /// /// public Point GetOTSPointFromOld_list_sortparticledistribution(int in_fieldid, int in_tagid, Control_DrawDistrbutionSortImage in_control_drawdistrbutionsortimage) { Point ret_point = new Point(0, 0); if (m_list_OTSField != null) { Field field = m_list_OTSField.Find(x => x.FieldID == in_fieldid); ret_point = new Point() { X = field.FieldPosX, Y = field.FieldPosY }; } return ret_point; } #endregion } }