using OTSDataType;
using OTSModelSharp.ImageProcess;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static OTSDataType.otsdataconst;
namespace OTSModelSharp.ServiceInterface
{
using OpenCvSharp;
using OTSCLRINTERFACE;
using OTSIMGPROC;
using OTSModelSharp.DTLBase;
using System.Drawing.Imaging;
using System.Runtime.InteropServices;
using System.Windows;
public class CImageHandler:IImageProcess
{
#region 通过byte数组生成BMP图像文件
///
/// 将一个byte的数组转换为8bit灰度位图
///
/// 数组
/// 图像宽度
/// 图像高度
/// 位图
public static Bitmap ToGrayBitmap(byte[] data, int width, int height)
{
if (width == 0 || height == 0)
return null;
//// 申请目标位图的变量,并将其内存区域锁定
Bitmap bmp = new Bitmap(width, height, PixelFormat.Format8bppIndexed);
//// BitmapData这部分内容 需要 using System.Drawing.Imaging;
BitmapData bmpData = bmp.LockBits(new Rectangle(0, 0, width, height),
ImageLockMode.WriteOnly, PixelFormat.Format8bppIndexed);
//// 获取图像参数
// 扫描线的宽度
int stride = bmpData.Stride;
// 显示宽度与扫描线宽度的间隙
int offset = stride - width;
// 获取bmpData的内存起始位置
IntPtr iptr = bmpData.Scan0;
// 用stride宽度,表示这是内存区域的大小
int scanBytes = stride * height;
//// 下面把原始的显示大小字节数组转换为内存中实际存放的字节数组
int posScan = 0;
int posReal = 0;// 分别设置两个位置指针,指向源数组和目标数组
byte[] pixelValues = new byte[scanBytes]; //为目标数组分配内存
//for (int x = height-1;x>=0 ; x--) data[startIndex+ y];//
for (int x = 0; x < height; x++)
{
int startIndex = x * width;
//// 下面的循环节是模拟行扫描
for (int y = 0; y < width; y++)
{
pixelValues[posScan++] = data[posReal++];
}
posScan += offset; //行扫描结束,要将目标位置指针移过那段“间隙”
}
//// 用Marshal的Copy方法,将刚才得到的内存字节数组复制到BitmapData中
System.Runtime.InteropServices.Marshal.Copy(pixelValues, 0, iptr, scanBytes);
bmp.UnlockBits(bmpData); // 解锁内存区域
//// 下面的代码是为了修改生成位图的索引表,从伪彩修改为灰度
ColorPalette tempPalette;
using (Bitmap tempBmp = new Bitmap(1, 1, PixelFormat.Format8bppIndexed))
{
tempPalette = tempBmp.Palette;
}
for (int i = 0; i < 256; i++)
{
tempPalette.Entries[i] = Color.FromArgb(i, i, i);
}
bmp.Palette = tempPalette;
return bmp;
}
#endregion
public static byte[] BitmapToGrayByte(Bitmap bitmap)
{
// 申请目标位图的变量,并将其内存区域锁定
BitmapData bitmapDat = bitmap.LockBits(new Rectangle(0, 0, bitmap.Width, bitmap.Height), ImageLockMode.ReadWrite, bitmap.PixelFormat);
// 获取bmpData的内存起始位置
IntPtr intPtr = bitmapDat.Scan0;
byte[] image = new byte[bitmap.Width * bitmap.Height];//原始数据
Marshal.Copy(intPtr, image, 0, bitmap.Width * bitmap.Height); // 将数据复制到byte数组中,
//解锁内存区域
bitmap.UnlockBits(bitmapDat);
return image;
}
//获取测量的BSE图
//COTSSample WSample: 工作样品测量
//Byte[] BSEImage: 带背景图数据
//int iHeight: 图像高度
//int iWidth: 图像宽度
//Byte[]BSEImageNoBG : 去背景图数据
public bool GetBSEImage(COTSImageProcParam ImgProcPrm, double pixelSize, byte[] BSEImage, int iHeight, int iWidth, ref byte[] BSEImageNoBG)
{
Rectangle rect = new Rectangle();
rect.Height = iHeight;
rect.Width = iWidth;
CBSEImgClr pBSEImageIn = new CBSEImgClr(rect);
CBSEImgClr pBSEImageOut = new CBSEImgClr(rect);
//pBSEImageIn.SetImageRect(rect);
pBSEImageIn.SetImageData(BSEImage,iWidth, iHeight );
//pBSEImageOut.SetImageRect(rect);
if (null == ImgProcPrm)
{
return false;
}
RemoveBackGround(pBSEImageIn, ImgProcPrm, pixelSize ,ref pBSEImageOut);
BSEImageNoBG = pBSEImageOut.GetImageDataPtr();
return true;
}
///
/// 获取测量的BSE图
///
/// BSE原数据
/// 图像高度
/// 图像宽度
///
///
/// 去背景图数据
///
public bool GetBSEImage(byte[] BSEImage, int iHeight, int iWidth, int grayStart, int grayEnd, ref byte[] BSEImageNoBG)
{
Rectangle rect = new Rectangle();
rect.Height = iHeight;
rect.Width = iWidth;
CBSEImgClr pBSEImageIn = new CBSEImgClr(rect);
CBSEImgClr pBSEImageOut = new CBSEImgClr(rect);
//pBSEImageIn.SetImageRect(rect);
pBSEImageIn.SetImageData(BSEImage, iWidth, iHeight );
CIntRangeClr cIntRangeClr = new CIntRangeClr();
cIntRangeClr.SetStart(grayStart);
cIntRangeClr.SetEnd(grayEnd);
OTSCLRINTERFACE.ImageProForClr imgpro = new OTSCLRINTERFACE.ImageProForClr();
int num=0;
imgpro.GetSpecialGrayRangeImage(pBSEImageIn, cIntRangeClr, pBSEImageOut,ref num);
for (int i = 0; i < iWidth; i++)
{
for (int j = 0; j < iHeight; j++)
{
var bse = pBSEImageOut.GetBSEValue(i, j);
if (bse == 255)
{
var originalBse = pBSEImageIn.GetBSEValue(i, j);
pBSEImageOut.SetBSEValue(i, j, originalBse);
}
else
{
pBSEImageOut.SetBSEValue(i, j, 255);
}
}
}
BSEImageNoBG = pBSEImageOut.GetImageDataPtr();
return true;
}
// remove background
public void RemoveBackGround(CBSEImgClr a_pImgIn, COTSImageProcParam a_pImgProcessParam, double a_pixelSize, ref CBSEImgClr a_pImgOut)
{
List parts = new List();
List specialGreyparts = new List();
if (!RemoveBGAndGetParts(a_pImgIn, a_pImgProcessParam, a_pixelSize, ref parts))
{
return;
}
if (a_pImgProcessParam.GetSpecialGreyRangeParam().GetIsToRun())
{
var param = a_pImgProcessParam.GetSpecialGreyRangeParam();
var ranges = param.GetSpecialGreyRanges();
foreach (var r in ranges)
{
CIntRangeClr r1 = new CIntRangeClr();
r1.SetStart(r.range.GetStart());
r1.SetEnd(r.range.GetEnd());
CDoubleRangeClr r2 = new CDoubleRangeClr();
r2.SetStart(r.diameterRange.GetStart());
r2.SetEnd(r.diameterRange.GetEnd());
GetParticlesBySpecialGray(a_pImgIn, r1, r2, a_pixelSize, ref specialGreyparts);
}
}
for (int i = 0; i < a_pImgOut.GetWidth(); i++)
{
for (int j = 0; j < a_pImgOut.GetHeight(); j++)
{
a_pImgOut.SetBSEValue(i, j, 255);
}
}
if (specialGreyparts.Count > 0)
{
foreach (var p in specialGreyparts)
{
foreach (var s in p.GetFeature().GetSegmentsList())
{
for (int i = s.GetStart(); i < s.GetStart() + s.GetLength(); i++)
{
var bseValue = a_pImgIn.GetBSEValue(i, s.GetHeight());
a_pImgOut.SetBSEValue(i, s.GetHeight(), bseValue);
}
}
}
}
foreach (var p in parts)
{
foreach (var s in p.GetFeature().GetSegmentsList())
{
for (int i = s.GetStart(); i < s.GetStart() + s.GetLength(); i++)
{
var bseValue = a_pImgIn.GetBSEValue(i, s.GetHeight());
a_pImgOut.SetBSEValue(i, s.GetHeight(), bseValue);
}
}
}
return;
}
public void BDilate3(string source, string target, int wDegree, int rows, int columns)
{
throw new NotImplementedException();
}
public void BErode3(string source, string target, int wDegree, int rows, int columns)
{
throw new NotImplementedException();
}
public bool CalParticleImageProp( COTSParticleClr part, double a_pixelSize)
{
OTSCLRINTERFACE.ImageProForClr imgpro = new OTSCLRINTERFACE.ImageProForClr();
imgpro.CalcuParticleImagePropertes(part,a_pixelSize);
return true;
}
public bool RemoveBGAndGetParts(CBSEImgClr img, COTSImageProcParam a_pImgProcessParam,double a_pixelSize,ref List parts)
{
OTSCLRINTERFACE.ImageProForClr imgpro = new OTSCLRINTERFACE.ImageProForClr();
OTSCLRINTERFACE.COTSImgProcPrmClr prm = GetImageProcPrmClr(a_pImgProcessParam);
OTSCLRINTERFACE.COTSFieldDataClr flddataclr = new OTSCLRINTERFACE.COTSFieldDataClr();
if (!imgpro.GetFieldDataFromImage(img, prm, a_pixelSize, flddataclr))
{
return false;
}
parts = flddataclr.GetParticleList();
return true;
}
public bool GetParticlesBySpecialGray(CBSEImgClr img, CIntRangeClr grayrange, CDoubleRangeClr diameterRange,double a_pixelSize, ref List parts)
{
OTSCLRINTERFACE.ImageProForClr imgpro = new OTSCLRINTERFACE.ImageProForClr();
//OTSCLRINTERFACE.COTSImgProcPrmClr prm = GetImageProcPrmClr(a_pImgProcessParam);
OTSCLRINTERFACE.COTSFieldDataClr flddataclr = new OTSCLRINTERFACE.COTSFieldDataClr();
imgpro.GetParticlesBySpecialPartGrayRange(img, grayrange,diameterRange,a_pixelSize, flddataclr);
parts = flddataclr.GetParticleList();
return true;
}
private COTSImgProcPrmClr GetImageProcPrmClr(COTSImageProcParam a_oSource)
{
COTSImgProcPrmClr prmclr = new COTSImgProcPrmClr();
OTSCLRINTERFACE.CDoubleRangeClr r1 = new OTSCLRINTERFACE.CDoubleRangeClr(a_oSource.GetIncAreaRange().GetStart(), a_oSource.GetIncAreaRange().GetEnd());
prmclr.SetIncArea(r1);
OTSCLRINTERFACE.CIntRangeClr r2= new OTSCLRINTERFACE.CIntRangeClr(a_oSource.GetBGGray().GetStart(), a_oSource.GetBGGray().GetEnd());
prmclr.SetBGGray(r2);
OTSCLRINTERFACE.CIntRangeClr r3= new OTSCLRINTERFACE.CIntRangeClr(a_oSource.GetParticleGray().GetStart(), a_oSource.GetParticleGray().GetEnd());
prmclr.SetParticleGray(r3);
prmclr.SetBGRemoveType((int)a_oSource.GetBGRemoveType());
prmclr.SetAutoBGRemoveType((int)a_oSource.GetAutoBGRemoveType());
prmclr.SetErrodDilateParam(a_oSource.GetErrodDilateParam());
prmclr.SetOverlapParam(a_oSource.GetOverlapParam());
return prmclr;
}
public bool MergeBigBoundaryParticles(List allFields, int overlap, double pixelSize, int scanFieldSize, System.Drawing.Size ResolutionSize, ref List mergedParts)
{
List fldclrs = new List();
foreach (var f in allFields)
{
COTSFieldDataClr fldclr = new COTSFieldDataClr();
PointF p1 = f.GetOTSPosition();
System.Drawing.Point p2 = new System.Drawing.Point((int)p1.X, (int)p1.Y);
fldclr.SetPosition(p2);
fldclr.SetImageWidth(f.Width);
fldclr.SetImageHeight(f.Height);
var parts = f.GetListAnalysisParticles();
foreach (var p in parts)
{
fldclr.AddParticle(p);
}
fldclrs.Add(fldclr);
}
OTSCLRINTERFACE.ImageProForClr imgpro = new OTSCLRINTERFACE.ImageProForClr();
imgpro.MergeBigBoundaryParticles(fldclrs, overlap, pixelSize, scanFieldSize, ResolutionSize, mergedParts);
return true;
}
///
/// 根据Segment寻找边缘坐标点
///
///
///
///
///
public static List FindContoursBySegment(int width, int height, List segmentClrs)
{
List points = new List();
using (Mat mat = new Mat(height, width, MatType.CV_8UC1, new Scalar(0)))
{
for (int i = 0; i < segmentClrs.Count; i++)
{
Cv2.Line(mat, new OpenCvSharp.Point(segmentClrs[i].GetStart(), segmentClrs[i].GetHeight()), new OpenCvSharp.Point(segmentClrs[i].GetStart() + segmentClrs[i].GetLength(), segmentClrs[i].GetHeight()), Scalar.White, 1, LineTypes.AntiAlias);
}
Point[][] contours;
HierarchyIndex[] hierarchy;
Cv2.FindContours(mat, out contours, out hierarchy, RetrievalModes.External, ContourApproximationModes.ApproxSimple, null);
for (int i = 0; i < contours.ToList().Count(); i++)
{
for (int j = 0; j < contours[i].Count(); j++)
{
System.Drawing.Point point = new System.Drawing.Point(contours[i][j].X, contours[i][j].Y);
if (!points.Contains(point))
{
points.Add(point);
}
}
}
}
return points;
}
public bool RepeatedParticleTreatment(List allFields, COTSSample theSample, string stdPath)
{
int maxPartCount = theSample.GetMsrParams().GetXRayParam().GetXrayLimit();
int overlap = theSample.GetMsrParams().GetImageProcessParam().GetOverlapParam();
double pixelSize = theSample.CalculatePixelSize();
System.Drawing.Size resolutionSize = theSample.GetResolutionSize();
int scanFieldSizeX = theSample.GetSEMDataMsr().GetScanFieldSize();
int scanFieldSizeY = scanFieldSizeX * resolutionSize.Height / resolutionSize.Width;
int offsetX = scanFieldSizeX - (int)(overlap * pixelSize);
int offsetY = scanFieldSizeY - (int)(overlap * pixelSize);
List deletePartList = new List();
List updatePartList= new List();
Dictionary combinBorderParts = new Dictionary();
List combinBorderParts_style = new List();
foreach (var item in allFields)
{
if (!item.GetIsMeasureComplete())
{
break;
}
//找到上下左右四帧图
List leftField = allFields.Where(a => a.OTSPos == new System.Drawing.PointF(item.OTSPos.X - offsetX, item.OTSPos.Y)).ToList();
List rightField = allFields.Where(a => a.OTSPos == new System.Drawing.PointF(item.OTSPos.X + offsetX, item.OTSPos.Y)).ToList();
List upField = allFields.Where(a => a.OTSPos == new System.Drawing.PointF(item.OTSPos.X, item.OTSPos.Y + offsetY)).ToList();
List downField = allFields.Where(a => a.OTSPos == new System.Drawing.PointF(item.OTSPos.X, item.OTSPos.Y - offsetY)).ToList();
//判断是否有效
if (leftField.Count() == 1)//包含左帧图
{
if (leftField[0].GetIsMeasureComplete() == true)//存在测量帧图
{
//寻找重叠颗粒
deletePartList.AddRange(FieldFun(leftField[0], item, "left_right", resolutionSize, overlap, ref combinBorderParts, ref combinBorderParts_style));
}
}
if (rightField.Count() == 1)//包含右帧图
{
if (rightField[0].GetIsMeasureComplete() == true)//存在测量帧图
{
//寻找重叠颗粒
deletePartList.AddRange(FieldFun(item, rightField[0], "left_right", resolutionSize, overlap, ref combinBorderParts, ref combinBorderParts_style));
}
}
if (upField.Count() == 1)//包含上帧图
{
if (upField[0].GetIsMeasureComplete() == true)//存在测量帧图
{
//寻找重叠颗粒
deletePartList.AddRange(FieldFun(upField[0], item, "up_down", resolutionSize, overlap, ref combinBorderParts, ref combinBorderParts_style));
}
}
if (downField.Count() == 1)//包含下帧图
{
if (downField[0].GetIsMeasureComplete() == true)//存在测量帧图
{
//寻找重叠颗粒
deletePartList.AddRange(FieldFun(item, downField[0], "up_down", resolutionSize, overlap, ref combinBorderParts, ref combinBorderParts_style));
}
}
}
//数据库操作
SQLiteHelper sQLiteHelper = new SQLiteHelper(stdPath);
sQLiteHelper.GetDBConnection();
sQLiteHelper.BeginTransaction();
deletePartList = deletePartList.Distinct().ToList();//去重
if (!sQLiteHelper.DeletePartForTransaction(deletePartList))//删除重复颗粒
{
return false;
}
if (!sQLiteHelper.CombinPartForTransaction(allFields, combinBorderParts, updatePartList, combinBorderParts_style, resolutionSize))//合并大颗粒
{
return false;
}
if (!sQLiteHelper.UpdatePartForTransaction(updatePartList))//修改Segment
{
return false;
}
sQLiteHelper.CommitTransaction();
return true;
}
private List FieldFun(COTSFieldData left_upField, COTSFieldData right_downField, string style, System.Drawing.Size resolutionSize, int overlap, ref Dictionary combinBorderParts, ref List combinBorderParts_style)
{
List particleClrs = new List();
combinBorderParts = new Dictionary();
if (style == "left_right")
{
//寻找左帧图的右侧区域颗粒
double left_upField_sum = 0;
double right_downField_sum = 0;
List leftBorderParts = new List();
List rightBorderParts = new List();
foreach (var leftParticles in left_upField.GetListAnalysisParticles())
{
Rectangle leftRectangle = (Rectangle)leftParticles.GetParticleRect();
if (leftRectangle.Right > resolutionSize.Width - overlap / 2)//未跨界
{
left_upField_sum += leftParticles.GetActualArea();
}
if (leftRectangle.Right == resolutionSize.Width || leftRectangle.Right == resolutionSize.Width - 1)//边界
{
leftBorderParts.Add(leftParticles);
}
}
foreach (var rightParticles in right_downField.GetListAnalysisParticles())
{
Rectangle rightRectangle = (Rectangle)rightParticles.GetParticleRect();
if (rightRectangle.Left > overlap / 2)//未跨界
{
right_downField_sum += rightParticles.GetActualArea();
}
if (rightRectangle.Left == 0)//边界
{
rightBorderParts.Add(rightParticles);
}
}
foreach (var leftBorder in leftBorderParts)
{
Rectangle leftRectangle = (Rectangle)leftBorder.GetParticleRect();
foreach (var rightBorder in rightBorderParts)
{
Rectangle rightRectangle = (Rectangle)rightBorder.GetParticleRect();
bool isTrue = false;
for (int i = leftRectangle.Y; i < leftRectangle.Y + leftRectangle.Height; i++)
{
if (i > rightRectangle.Y && i < rightRectangle.Y + rightRectangle.Height)
{
combinBorderParts.Add(leftBorder, rightBorder);
combinBorderParts_style.Add("left");
isTrue = true;
break;
}
}
if (isTrue)
{
break;
}
}
}
if (left_upField_sum < right_downField_sum)
{
foreach (var leftParticles in left_upField.GetListAnalysisParticles())
{
Rectangle leftRectangle = (Rectangle)leftParticles.GetParticleRect();
if (leftRectangle.Left > resolutionSize.Width - overlap)//未跨界
{
if (!combinBorderParts.ContainsKey(leftParticles))
{
particleClrs.Add(leftParticles);
}
}
}
}
else
{
foreach (var downParticles in right_downField.GetListAnalysisParticles())
{
Rectangle downRectangle = (Rectangle)downParticles.GetParticleRect();
if (downRectangle.Right < overlap / 2)//未跨界
{
if (!combinBorderParts.ContainsValue(downParticles))
{
particleClrs.Add(downParticles);
}
}
}
}
}
else
{
//寻找上帧图的下侧区域颗粒
double left_upField_sum = 0;
double right_downField_sum = 0;
List upBorderParts = new List();
List downBorderParts = new List();
foreach (var upParticles in left_upField.GetListAnalysisParticles())
{
Rectangle upRectangle = (Rectangle)upParticles.GetParticleRect();
if (upRectangle.Top > resolutionSize.Height - overlap / 2)//未跨界
{
left_upField_sum += upParticles.GetActualArea();
}
if (upRectangle.Bottom == resolutionSize.Height || upRectangle.Bottom == resolutionSize.Height - 1)//边界
{
upBorderParts.Add(upParticles);
}
}
foreach (var downParticles in right_downField.GetListAnalysisParticles())
{
Rectangle downRectangle = (Rectangle)downParticles.GetParticleRect();
if (downRectangle.Top > resolutionSize.Height - overlap / 2)//未跨界
{
right_downField_sum += downParticles.GetActualArea();
}
if (downRectangle.Top == 0)//边界
{
downBorderParts.Add(downParticles);
}
else if (downRectangle.Top == 1)//边界
{
downBorderParts.Add(downParticles);
}
}
foreach (var upBorder in upBorderParts)
{
Rectangle upRectangle = (Rectangle)upBorder.GetParticleRect();
foreach (var downBorder in downBorderParts)
{
Rectangle downRectangle = (Rectangle)downBorder.GetParticleRect();
bool isTrue = false;
for (int i = upRectangle.X; i < upRectangle.X + upRectangle.Width; i++)
{
if (i > downRectangle.X && i < downRectangle.X + downRectangle.Width)
{
combinBorderParts.Add(upBorder, downBorder);
combinBorderParts_style.Add("up");
isTrue = true;
break;
}
}
if (isTrue)
{
break;
}
}
}
if (left_upField_sum < right_downField_sum)
{
foreach (var upParticles in left_upField.GetListAnalysisParticles())
{
Rectangle upRectangle = (Rectangle)upParticles.GetParticleRect();
if (upRectangle.Top > resolutionSize.Height - overlap / 2)//未跨界
{
if (!combinBorderParts.ContainsKey(upParticles))
{
particleClrs.Add(upParticles);
}
}
}
}
else
{
foreach (var downParticles in right_downField.GetListAnalysisParticles())
{
Rectangle downRectangle = (Rectangle)downParticles.GetParticleRect();
if (downRectangle.Bottom < overlap / 2)//未跨界
{
if (!combinBorderParts.ContainsValue(downParticles))
{
particleClrs.Add(downParticles);
}
}
}
}
}
return particleClrs;
}
public Mat CombinImageX(Mat[] list_mats, int OverlapParam, int type)
{
List matStitch = new List();//拼接
List matCombin = new List();//合并
for (int i = 0; i < list_mats.Count(); i++)
{
if (i == 0)//首张
{
matCombin.Add(new Mat(list_mats[i], new Rect(0, 0, list_mats[i].Width - OverlapParam - 100, list_mats[i].Height)));
matStitch.Add(new Mat(list_mats[i], new Rect(list_mats[i].Width - OverlapParam - 100, 0, OverlapParam + 100, list_mats[i].Height)));
}
else if(i == list_mats.Count() - 1)//末张
{
matStitch.Add(new Mat(list_mats[i], new Rect(0, 0, OverlapParam + 100, list_mats[i].Height)));
matCombin.Add(new Mat(list_mats[i], new Rect(OverlapParam + 100, 0, list_mats[i].Width - OverlapParam - 100, list_mats[i].Height)));
}
else
{
matStitch.Add(new Mat(list_mats[i], new Rect(0, 0, OverlapParam + 100, list_mats[i].Height)));
matCombin.Add(new Mat(list_mats[i], new Rect(OverlapParam + 100, 0, list_mats[i].Width - (OverlapParam + 100) * 2, list_mats[i].Height)));
matStitch.Add(new Mat(list_mats[i], new Rect(list_mats[i].Width - OverlapParam - 100, 0, OverlapParam + 100, list_mats[i].Height)));
}
}
for (int i = 0; i < matStitch.Count; i += 2)
{
if (matStitch.Count == 1)
{
matCombin.Insert(i + 1, matStitch[i]);
}
else
{
matCombin.Insert(i + 1, StitchImageX((int)(OverlapParam / 2 * 1.2), type, matStitch[i], matStitch[i + 1]));
}
}
Mat pano = new OpenCvSharp.Mat();
Cv2.HConcat(matCombin.ToArray(), pano);
return pano;
}
public Mat CombinImageY(Mat[] list_mats, int OverlapParam, int type)
{
List matStitch = new List();//拼接
List matCombin = new List();//合并
for (int i = 0; i < list_mats.Count(); i++)
{
if (i == 0)//首张
{
matCombin.Add(new Mat(list_mats[i], new Rect(0, 0, list_mats[i].Width, list_mats[i].Height - OverlapParam - 100)));
matStitch.Add(new Mat(list_mats[i], new Rect(0, list_mats[i].Height - OverlapParam - 100, list_mats[i].Width, OverlapParam + 100)));
}
else if (i == list_mats.Count() - 1)//末张
{
matStitch.Add(new Mat(list_mats[i], new Rect(0, 0, list_mats[i].Width, OverlapParam + 100)));
matCombin.Add(new Mat(list_mats[i], new Rect(0, OverlapParam + 100, list_mats[i].Width, list_mats[i].Height - OverlapParam - 100)));
}
else
{
matStitch.Add(new Mat(list_mats[i], new Rect(0, 0, list_mats[i].Width, OverlapParam + 100)));
matCombin.Add(new Mat(list_mats[i], new Rect(0, OverlapParam + 100, list_mats[i].Width, list_mats[i].Height - (OverlapParam + 100) * 2)));
matStitch.Add(new Mat(list_mats[i], new Rect(0, list_mats[i].Height - OverlapParam - 100, list_mats[i].Width, OverlapParam + 100)));
}
}
for (int i = 0; i < matStitch.Count; i += 2)
{
if (matStitch.Count == 1)
{
matCombin.Insert(i + 1, matStitch[i]);
}
else
{
matCombin.Insert(i + 1, StitchImageY(OverlapParam, type, matStitch[i], matStitch[i + 1]));
}
}
Mat pano = new OpenCvSharp.Mat();
Cv2.VConcat(matCombin.ToArray(), pano);
return pano;
}
public struct MStitch
{
public int Pwidth;//单幅图像的宽度
public int Pheight;//单幅图像的高度
public int W_min;//最小的重叠区域宽度
public int W_max;//最大的重叠区域宽度
public int H_min;//最小的重叠区域高度
public double minval;//块过滤阈值
public Mat im;//图像信息
}
public struct ImageParam
{
public int W_box;//宽度信息
public int H_box;//高度信息
public int bdown;//上下信息
public MStitch mStitch; //参数结构
public Mat im;//图像信息
}
///
/// 横向拼图
///
public Mat StitchImageXGrid(int min_w, int type, Mat newImg1, Mat newImg2)
{
MStitch mStitch = new MStitch();
mStitch.Pwidth = newImg1.Width;
mStitch.Pheight = newImg1.Height;
mStitch.W_min = min_w - 50;
mStitch.W_max = min_w + 50;
mStitch.H_min = newImg1.Height;
mStitch.minval = 255;
mStitch.im = newImg1;
ImageParam imageParam = Fun_Match(newImg2, mStitch);
imageParam.im = newImg2;
if (type == 2)
{
return Fun_Stitch(imageParam);
}
else
{
return Fun_StitchRGB(imageParam);
}
}
///
/// 纵向拼图
///
public Mat StitchImageYGrid(int min_w, int type, Mat newImg1, Mat newImg2)
{
Cv2.Transpose(newImg1, newImg1);
Cv2.Flip(newImg1, newImg1, FlipMode.X);
Cv2.Transpose(newImg2, newImg2);
Cv2.Flip(newImg2, newImg2, FlipMode.X);
MStitch mStitch = new MStitch();
mStitch.Pwidth = newImg1.Width;
mStitch.Pheight = newImg1.Height;
mStitch.W_min = min_w - 50;
mStitch.W_max = min_w + 50;
mStitch.H_min = newImg1.Height;
mStitch.minval = 255;
mStitch.im = newImg1;
ImageParam imageParam = Fun_Match(newImg2, mStitch);
imageParam.im = newImg2;
Mat result = type == 2 ? Fun_Stitch(imageParam) : Fun_StitchRGB(imageParam);
Cv2.Transpose(result, result);
Cv2.Flip(result, result, FlipMode.Y);
return result;
}
///
/// 横向拼图
///
public Mat StitchImageX(int min_w, int type, Mat newImg1, Mat newImg2)
{
MStitch mStitch = new MStitch();
mStitch.Pwidth = newImg1.Width;
mStitch.Pheight = newImg1.Height;
mStitch.W_min = min_w;
mStitch.W_max = min_w;
mStitch.H_min = newImg1.Height;
mStitch.minval = 255;
mStitch.im = newImg1;
ImageParam imageParam = Fun_Match(newImg2, mStitch);
imageParam.im = newImg2;
if (type == 2)
{
return Fun_Stitch(imageParam);
}
else
{
return Fun_StitchRGB(imageParam);
}
}
///
/// 纵向拼图
///
public Mat StitchImageY(int min_w, int type, Mat newImg1, Mat newImg2)
{
Cv2.Transpose(newImg1, newImg1);
Cv2.Flip(newImg1, newImg1, FlipMode.X);
Cv2.Transpose(newImg2, newImg2);
Cv2.Flip(newImg2, newImg2, FlipMode.X);
MStitch mStitch = new MStitch();
mStitch.Pwidth = newImg1.Width;
mStitch.Pheight = newImg1.Height;
mStitch.W_min = min_w - 50;
mStitch.W_max = min_w - 50;
mStitch.H_min = newImg1.Height - 20;
mStitch.minval = 255;
mStitch.im = newImg1;
ImageParam imageParam = Fun_Match(newImg2, mStitch);
imageParam.im = newImg2;
Mat result = type == 2 ? Fun_Stitch(imageParam) : Fun_StitchRGB(imageParam);
Cv2.Transpose(result, result);
Cv2.Flip(result, result, FlipMode.Y);
return result;
}
public static ImageParam Fun_Match(Mat im2, MStitch mStitch)
{
ImageParam imageParam = new ImageParam();
double imsum = 0;
int x1 = 0;
int y1 = 0;
int x2 = 0;
int y2 = 0;
int w_ind = 0;
int h_ind = 0;
//在上窗口所有匹配块内进行搜索
for (int w = mStitch.W_min; w <= mStitch.W_max; w++)
{
for (int h = mStitch.H_min; h <= mStitch.Pheight; h++)
{
imsum = 0;//块差分集初始化
x2 = 1;
for (x1 = mStitch.Pwidth - w; x1 <= mStitch.Pwidth; x1 += 5)
{
y2 = 1;
for (y1 = mStitch.Pheight - h + 1; y1 <= mStitch.Pheight; y1 += 5)
{
//块差分集计算
CheckRC(ref x1, ref y1, mStitch.im);
CheckRC(ref x2, ref y2, im2);
imsum = imsum + Math.Abs(mStitch.im.At(y1, x1).Item0 - im2.At(y2, x2).Item0);
y2 = y2 + 5;
}
x2 = x2 + 5;
}
//阈值更新
if (imsum * 5 * 5 <= mStitch.minval * w * h)
{
mStitch.minval = imsum * 5 * 5 / (w * h);
w_ind = w;
h_ind = h;
}
}
}
imageParam.W_box = w_ind;
imageParam.H_box = h_ind;
imageParam.bdown = 1;
//在下窗口所有匹配块内进行搜索
Parallel.For(mStitch.W_min, mStitch.W_max, w =>
{
Parallel.For(mStitch.H_min, mStitch.Pheight, h =>
{
imsum = 0;//块差分集初始化
x2 = 1;
for (x1 = mStitch.Pwidth - w; x1 <= mStitch.Pwidth; x1 += 5)
{
y1 = 1;
for (y2 = mStitch.Pheight - h + 1; y2 <= mStitch.Pheight; y2 += 5)
{
//块差分集计算
CheckRC(ref x1, ref y1, mStitch.im);
CheckRC(ref x2, ref y2, im2);
imsum = imsum + Math.Abs(mStitch.im.At(y1, x1).Item0 - im2.At(y2, x2).Item0);
y1 = y1 + 5;
}
x2 = x2 + 5;
}
//阈值更新
if (imsum * 5 * 5 <= mStitch.minval * w * h)
{
mStitch.minval = imsum * 5 * 5 / (w * h);
w_ind = w;
h_ind = h;
imageParam.bdown = 0;
}
});
});
imageParam.mStitch = mStitch;
return imageParam;
}
public static void CheckRC(ref int x, ref int y, Mat im)
{
//图像矩阵访问有效性检测
// 输入参数:
// x——列
// y——行
// im——图像矩阵
// 输出参数:
// x——列
// y——行
y = Math.Max(y, 1);
y = Math.Min(y, im.Height - 1);
x = Math.Max(x, 1);
x = Math.Min(x, im.Width - 1);
}
public Mat Fun_Stitch(ImageParam imageParam)
{
//图像融合
//输入参数:
//im2——待融合图像
//W_box——宽度信息
//H_box——高度信息
//bdown——上下信息
//MStitch——参数结构
//输出参数:
//MStitch——参数结构
//im——融合图像
Mat img = imageParam.im;
int x1 = 0;
int y1 = 0;
int x2 = 0;
int y2 = 0;
double w = 0.5; //融合权值
if (imageParam.bdown == 1)
{
//下区域重叠
x2 = 1;
//融合重叠区域
for (x1 = imageParam.mStitch.Pwidth - imageParam.W_box; x1 < imageParam.mStitch.Pwidth; x1++)
{
y2 = 1;
for (y1 = imageParam.mStitch.Pheight - imageParam.H_box + 1; y1 < imageParam.mStitch.Pheight; y1++)
{
//安全性检测
CheckRC(ref x1, ref y1, imageParam.mStitch.im);
CheckRC(ref x2, ref y2, imageParam.im);
//融合权值
w = (double)x2 / (double)imageParam.W_box;
//加权融合
double ColorRGB = imageParam.mStitch.im.At(y1, x1).Item0 * (1.0 - w) + imageParam.im.At(y2, x2).Item0 * w;
imageParam.mStitch.im.Set(y1, x1, new Vec3b((byte)ColorRGB, (byte)ColorRGB, (byte)ColorRGB));
y2 = y2 + 1;
}
x2 = x2 + 1;
}
}
else
{
//上区域重叠
x2 = 1;
//融合重叠区域
for (x1 = imageParam.mStitch.Pwidth - imageParam.W_box; x1 < imageParam.mStitch.Pwidth; x1++)
{
y2 = 1;
for (y1 = imageParam.mStitch.Pheight - imageParam.H_box + 1; y1 < imageParam.mStitch.Pheight; y1++)
{
//安全性检测
CheckRC(ref x1, ref y1, imageParam.mStitch.im);
CheckRC(ref x2, ref y2, imageParam.im);
//融合权值
w = (double)x2 / (double)imageParam.W_box;
//加权融合
double ColorRGB = imageParam.mStitch.im.At(y1, x1).Item0 * (1.0 - w) + imageParam.im.At(y2, x2).Item0 * w;
imageParam.mStitch.im.Set(y1, x1, new Vec3b((byte)ColorRGB, (byte)ColorRGB, (byte)ColorRGB));
y2 = y2 + 1;
}
x2 = x2 + 1;
}
}
//最终图
img = new Mat(imageParam.mStitch.Pheight, imageParam.mStitch.Pwidth + imageParam.im.Width - x2 + 1, MatType.CV_8UC3);
//分离出重叠区域
Rect m_select = new Rect(x2 - 1, 0, imageParam.im.Width - x2 + 1, imageParam.mStitch.Pheight);
Mat imgSwitch = new Mat(imageParam.im, m_select);
Cv2.HConcat(imageParam.mStitch.im, imgSwitch, img);
return img;
}
public Mat Fun_StitchRGB(ImageParam imageParam)
{
//图像融合
//输入参数:
//im2——待融合图像
//W_box——宽度信息
//H_box——高度信息
//bdown——上下信息
//MStitch——参数结构
//输出参数:
//MStitch——参数结构
//im——融合图像
Mat img = imageParam.im;
int x1 = 0;
int y1 = 0;
int x2 = 0;
int y2 = 0;
double w = 0.5; //融合权值
if (imageParam.bdown == 1)
{
//下区域重叠
x2 = 1;
//融合重叠区域
for (x1 = imageParam.mStitch.Pwidth - imageParam.W_box; x1 < imageParam.mStitch.Pwidth; x1++)
{
y2 = 1;
for (y1 = imageParam.mStitch.Pheight - imageParam.H_box + 1; y1 < imageParam.mStitch.Pheight; y1++)
{
//安全性检测
CheckRC(ref x1, ref y1, imageParam.mStitch.im);
CheckRC(ref x2, ref y2, imageParam.im);
//融合权值
w = (double)x2 / (double)imageParam.W_box;
//加权融合
double ColorR = imageParam.mStitch.im.At(y1, x1).Item0 * (1.0 - w) + imageParam.im.At(y2, x2).Item0 * w;
double ColorG = imageParam.mStitch.im.At(y1, x1).Item1 * (1.0 - w) + imageParam.im.At(y2, x2).Item1 * w;
double ColorB = imageParam.mStitch.im.At(y1, x1).Item2 * (1.0 - w) + imageParam.im.At(y2, x2).Item2 * w;
if (imageParam.mStitch.im.At(y1, x1).Item0 == imageParam.mStitch.im.At(y1, x1).Item1 &&
imageParam.mStitch.im.At(y1, x1).Item1 == imageParam.mStitch.im.At(y1, x1).Item2 &&
imageParam.im.At(y2, x2).Item0 == imageParam.im.At(y2, x2).Item1 &&
imageParam.im.At(y2, x2).Item1 == imageParam.im.At(y2, x2).Item2)
{
imageParam.mStitch.im.Set(y1, x1, new Vec3b((byte)ColorR, (byte)ColorG, (byte)ColorB));
}
else
{
}
y2 = y2 + 1;
}
x2 = x2 + 1;
}
}
else
{
//上区域重叠
x2 = 1;
//融合重叠区域
for (x1 = imageParam.mStitch.Pwidth - imageParam.W_box; x1 < imageParam.mStitch.Pwidth; x1++)
{
y2 = 1;
for (y1 = imageParam.mStitch.Pheight - imageParam.H_box + 1; y1 < imageParam.mStitch.Pheight; y1++)
{
//安全性检测
CheckRC(ref x1, ref y1, imageParam.mStitch.im);
CheckRC(ref x2, ref y2, imageParam.im);
//融合权值
w = (double)x2 / (double)imageParam.W_box;
//加权融合
double ColorR = imageParam.mStitch.im.At(y1, x1).Item0 * (1.0 - w) + imageParam.im.At(y2, x2).Item0 * w;
double ColorG = imageParam.mStitch.im.At(y1, x1).Item1 * (1.0 - w) + imageParam.im.At(y2, x2).Item1 * w;
double ColorB = imageParam.mStitch.im.At(y1, x1).Item2 * (1.0 - w) + imageParam.im.At(y2, x2).Item2 * w;
if (imageParam.mStitch.im.At(y1, x1).Item0 == imageParam.mStitch.im.At(y1, x1).Item1 &&
imageParam.mStitch.im.At(y1, x1).Item1 == imageParam.mStitch.im.At(y1, x1).Item2 &&
imageParam.im.At(y2, x2).Item0 == imageParam.im.At(y2, x2).Item1 &&
imageParam.im.At(y2, x2).Item1 == imageParam.im.At(y2, x2).Item2)
{
imageParam.mStitch.im.Set(y1, x1, new Vec3b((byte)ColorR, (byte)ColorG, (byte)ColorB));
}
else
{
}
y2 = y2 + 1;
}
x2 = x2 + 1;
}
}
//最终图
img = new Mat(imageParam.mStitch.Pheight, imageParam.mStitch.Pwidth + imageParam.im.Width - x2 + 1, MatType.CV_8UC3);
//分离出重叠区域
Rect m_select = new Rect(x2 - 1, 0, imageParam.im.Width - x2 + 1, imageParam.mStitch.Pheight);
Mat imgSwitch = new Mat(imageParam.im, m_select);
Cv2.HConcat(imageParam.mStitch.im, imgSwitch, img);
return img;
}
}
}