| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717 | #pragma once#include "stdafx.h"#include <opencv2/core/core.hpp>  #include <opencv2/highgui/highgui.hpp> #include <opencv2/opencv.hpp>#include "OTSImageProcess.h"#include "OTSImageProcessParam.h"#include <OTSFieldData.h>#include "OTSMorphology.h"#include "../OTSLog/COTSUtilityDllFunExport.h"#include "FieldMgr.h"#include "BaseFunction.h"namespace OTSIMGPROC{	using namespace cv;	using namespace std;	const int nBlackColor = 255;			COTSImageProcess::COTSImageProcess(COTSImageProcessParamPtr a_pImageProcessParam)	{		m_imageProcessParam = a_pImageProcessParam;	}	COTSImageProcess::~COTSImageProcess()	{	}	BOOL COTSImageProcess::RemoveBGByCVconnectivities(CBSEImgPtr inBSEImg, double a_pixelSize,  COTSFieldDataPtr m_pFieldData)	{		ASSERT(m_pFieldData);		ASSERT(inBSEImg);		ASSERT(m_imageProcessParam);		int nWidthImg = inBSEImg->GetWidth();		int nHeightImg = inBSEImg->GetHeight();		m_pFieldData->Width = nWidthImg;		m_pFieldData->Height = nHeightImg;		long nImgSize = nWidthImg * nHeightImg;		BYTE* pSrcImg = inBSEImg->GetImageDataPointer();		BYTE* pTempImg = new BYTE[nImgSize];		CRect r = CRect(0, 0, nWidthImg, nHeightImg);		CBSEImgPtr imgNoBGBinary = CBSEImgPtr(new CBSEImg(r));				RemoveBackGround(inBSEImg, m_imageProcessParam, imgNoBGBinary/*, nNumParticle*/);		BYTE* pPixel = imgNoBGBinary->GetImageDataPointer();		long nEigenGrayStart = m_imageProcessParam->GetParticleGray().GetStart();		long nEigenGrayEnd = m_imageProcessParam->GetParticleGray().GetEnd();					// get the area image				Mat cvcopyImg = Mat(nHeightImg, nWidthImg, CV_8UC1, pPixel);					Mat labels = Mat::zeros(cvcopyImg.size(), CV_32S);			Mat  stats, centroids;			int number = connectedComponentsWithStats(cvcopyImg, labels, stats, centroids, 8, CV_32S);						double rMin = m_imageProcessParam->GetIncArea().GetStart()/2.0;			double rMax = m_imageProcessParam->GetIncArea().GetEnd()/2.0;			double partAreaMin = rMin * rMin * 3.14159;			double partAreaMax = rMax * rMax * 3.14159;					COTSParticleList listParticleOut;			for (size_t i = 1; i < number; i++)			{				int center_x = centroids.at<double>(i, 0);				  int center_y = centroids.at<double>(i, 1);				  //앤近긋움				  int x = stats.at<int>(i, CC_STAT_LEFT);				  int y = stats.at<int>(i, CC_STAT_TOP);				  int w = stats.at<int>(i, CC_STAT_WIDTH);				  int h = stats.at<int>(i, CC_STAT_HEIGHT);				  int area = stats.at<int>(i, CC_STAT_AREA);				  double actualArea = area * a_pixelSize * a_pixelSize;				  if (actualArea >= partAreaMin && actualArea < partAreaMax)				  {				 					Rect rectMax = Rect(x, y, w, h);																			Mat  rectROI = labels(rectMax).clone();					Mat imageROI = Mat::zeros(rectMax.size(), cvcopyImg.type());					//exclude the point which  intersect into this bounding box but is not in this group.					int label = i;					for (int row = 0; row < rectROI.rows; row++)					{						for (int col = 0; col < rectROI.cols; col++)						{							int v = rectROI.at<int>(row, col);							if (v == label)							{								imageROI.at<uchar>(row, col) = 255;//set the value to 255,so we won't consider other pixel when we find segment and feature in this ROI.							}												}					}					COTSParticleList roiParts;										if (GetOneParticleFromROI(rectMax.x, rectMax.y, rectMax.width, rectMax.height, imageROI.data, roiParts))					{						if (roiParts.size() > 0)						{							COTSParticlePtr roiPart = roiParts[0];//we will find only one part in the roi.							roiPart->SetXRayPos(CPoint(center_x, center_y));							CRect r = CRect(x, y, x + w, y + h);							roiPart->SetParticleRect(r);							roiPart->SetActualArea(actualArea);							roiPart->SetPixelArea(area);							listParticleOut.push_back(roiPart);						}					}														  }			}			int  nTagId;						COTSParticleList listParticleSearched;			for (auto pParticle : listParticleOut)			{				COTSFeaturePtr pFeature = pParticle->GetFeature();				COTSSegmentsList listSegment = pFeature->GetSegmentsList();				long nPixelNum = 0;				long eigenPixelNum = 0;				long nPixelAll = 0;				int nStartS = 0;				int nHeightS = 0;				int nLengthS = 0;				for (auto pSegment : listSegment)				{						// get particle average gray					nStartS = pSegment->GetStart();					nHeightS = pSegment->GetHeight();					nLengthS = pSegment->GetLength();					nPixelNum += (long)nLengthS;					for (unsigned int i = 0; i < nLengthS; i++)					{									long nValueTemp = (long)*(pSrcImg + nHeightS * nWidthImg + nStartS + i);						nPixelAll += nValueTemp;						if (nValueTemp >= nEigenGrayStart && nValueTemp <= nEigenGrayEnd)						{							eigenPixelNum += 1;						}					}				}				double r = m_imageProcessParam->GetIncArea().GetStart() / 2;				double minPartArea = 3.14159 * r * r;				if (eigenPixelNum* a_pixelSize*a_pixelSize > minPartArea)				{					BYTE nAveGray = (BYTE)(nPixelAll / nPixelNum);					pParticle->SetAveGray(nAveGray);					auto fieldOTSRect = m_pFieldData->GetOTSRect();					CPoint leftTop = fieldOTSRect.GetTopLeft();					CRect rectInSinglefld = pParticle->GetParticleRect();					CPoint OTSLeftTop = CPoint(leftTop.x + rectInSinglefld.left * a_pixelSize, leftTop.y - rectInSinglefld.top * a_pixelSize);					CPoint OTSRightBottom = CPoint(leftTop.x + rectInSinglefld.right * a_pixelSize, leftTop.y - rectInSinglefld.bottom * a_pixelSize);					COTSRect recInOTSCord = COTSRect(OTSLeftTop, OTSRightBottom);					pParticle->SetOTSRect(recInOTSCord);					listParticleSearched.push_back(pParticle);				}							}			m_pFieldData->SetParticleList(listParticleSearched);				delete[]pTempImg;		return TRUE;	}	BOOL COTSImageProcess::GetParticlesBySpecialGrayRange(CBSEImgPtr a_pBSEImg, CIntRangePtr a_grayRange,CDoubleRangePtr a_diameterRange,double a_pixelSize, COTSFieldDataPtr m_pFieldData)	{		ASSERT(m_pFieldData);		ASSERT(a_pBSEImg);		ASSERT(a_grayRange);		int nWidthImg = a_pBSEImg->GetWidth();		int nHeightImg = a_pBSEImg->GetHeight();		m_pFieldData->Width = nWidthImg;		m_pFieldData->Height = nHeightImg;		long nImgSize = nWidthImg * nHeightImg;		BYTE* pSrcImg = a_pBSEImg->GetImageDataPointer();		BYTE* pTempImg = new BYTE[nImgSize];		CRect r = CRect(0, 0, nWidthImg, nHeightImg);		CBSEImgPtr imgNoBGBinary = CBSEImgPtr(new CBSEImg(r));				long nNumParticle = 0;		GetSpecialGrayRangeImage(a_pBSEImg, a_grayRange, imgNoBGBinary, nNumParticle);		BYTE* pPixel = imgNoBGBinary->GetImageDataPointer();		if (nNumParticle == 0)		{			COTSParticleList listParticleEmpty;			listParticleEmpty.clear();			m_pFieldData->SetParticleList(listParticleEmpty);				}		else		{			// get the area image			Mat cvcopyImg = Mat(nHeightImg, nWidthImg, CV_8UC1, pPixel);							Mat labels = Mat::zeros(cvcopyImg.size(), CV_32S);			Mat  stats, centroids;			int number = connectedComponentsWithStats(cvcopyImg, labels, stats, centroids, 8, CV_32S);			double rStart = a_diameterRange->GetStart() / 2.0;			double rEnd = a_diameterRange->GetEnd() / 2.0;			double areaStart = rStart * rStart * 3.14159;			double areaEnd = rEnd * rEnd * 3.14159;			COTSParticleList listParticleOut;			for (size_t i = 1; i < number; i++)			{				int center_x = centroids.at<double>(i, 0);				int center_y = centroids.at<double>(i, 1);				//앤近긋움				int x = stats.at<int>(i, CC_STAT_LEFT);				int y = stats.at<int>(i, CC_STAT_TOP);				int w = stats.at<int>(i, CC_STAT_WIDTH);				int h = stats.at<int>(i, CC_STAT_HEIGHT);				int area = stats.at<int>(i, CC_STAT_AREA);				double actualArea = area * a_pixelSize * a_pixelSize;								if (actualArea >= areaStart && actualArea < areaEnd)				{					Rect rectMax = Rect(x, y, w, h);					Mat  rectROI = labels(rectMax).clone();					Mat imageROI = Mat::zeros(rectMax.size(), cvcopyImg.type());					//exclude the point which  intersect into this bounding box but is not in this group.					int label = i;					for (int row = 0; row < rectROI.rows; row++)					{						for (int col = 0; col < rectROI.cols; col++)						{							int v = rectROI.at<int>(row, col);							if (v == label)							{								imageROI.at<uchar>(row, col) = 255;							}						}					}					COTSParticleList roiParts;					if (!GetOneParticleFromROI(rectMax.x, rectMax.y, rectMax.width, rectMax.height, imageROI.data, roiParts))					{						continue;					}					if (roiParts.size() > 0)					{						COTSParticlePtr roiPart = roiParts[0];						roiPart->SetXRayPos(CPoint(center_x, center_y));						CRect r = CRect(x, y, x + w, y + h);						roiPart->SetParticleRect(r);						roiPart->SetActualArea(actualArea);						roiPart->SetPixelArea(area);						listParticleOut.push_back(roiPart);					}								}							}			// form a image only have particles on			//COTSSegmentsList listImage;						for (auto pParticle : listParticleOut)			{				int area = pParticle->GetActualArea();				double pActualArea = area ;								COTSFeaturePtr pFeature = pParticle->GetFeature();					COTSSegmentsList listSegment = pFeature->GetSegmentsList();					long nPixelNum = 0;					long nPixelAll = 0;					int nStartS = 0;					int nHeightS = 0;					int nLengthS = 0;					for (auto pSegment : listSegment)					{						// get particle average gray						nStartS = pSegment->GetStart();						nHeightS = pSegment->GetHeight();						nLengthS = pSegment->GetLength();						nPixelNum += (long)nLengthS;						for (unsigned int i = 0; i < nLengthS; i++)						{							long nValueTemp = (long)*(pSrcImg + nHeightS * nWidthImg + nStartS + i);							nPixelAll += nValueTemp;						}					}					BYTE nAveGray = (BYTE)(nPixelAll / nPixelNum);					pParticle->SetAveGray(nAveGray);					auto fieldOTSRect = m_pFieldData->GetOTSRect();					CPoint leftTop = fieldOTSRect.GetTopLeft();					CRect rectInSinglefld = pParticle->GetParticleRect();					CPoint OTSLeftTop = CPoint(leftTop.x + rectInSinglefld.left * a_pixelSize, leftTop.y - rectInSinglefld.top * a_pixelSize);					CPoint OTSRightBottom = CPoint(leftTop.x + rectInSinglefld.right * a_pixelSize, leftTop.y - rectInSinglefld.bottom * a_pixelSize);					COTSRect recInOTSCord = COTSRect(OTSLeftTop, OTSRightBottom);					pParticle->SetOTSRect(recInOTSCord);			}			m_pFieldData->SetParticleList(listParticleOut);		}		delete[]pTempImg;		return TRUE;	}	BOOL COTSImageProcess::SplitFieldImageIntoMatricsParticle(CBSEImgPtr fieldImg, double a_PixelSize, COTSFieldDataPtr outFldData)	{		int nWidthImg = fieldImg->GetWidth();		int nHeightImg = fieldImg->GetHeight();		outFldData->Width = nWidthImg;		outFldData->Height = nHeightImg;		CRect r = CRect(0, 0, nWidthImg, nHeightImg);		CBSEImgPtr imgNoBGBinary = CBSEImgPtr(new CBSEImg(r));			double xrayStep = m_imageProcessParam->GetXrayStep();		xrayStep = xrayStep / a_PixelSize;		auto rect = fieldImg->GetImageRect();		std::vector<CPoint> matrixPs;		int colnum = ceil((double)rect.Width() / xrayStep + 0.5);		if (colnum % 2 == 0) colnum += 1;//let the number to be an odd number.Then we can make the middle point in the center of the particle exactly.		int rownum = ceil((double)rect.Height() / xrayStep + 0.5);		if (rownum % 2 == 0) rownum += 1;		CPoint theFirst = CPoint(rect.left - (colnum * xrayStep - rect.Width()) / 2 + xrayStep / 2, rect.top - (rownum * xrayStep - rect.Height()) / 2 + xrayStep / 2);		for (int i = 0; i < rownum; i++)		{			for (int j = 0; j < colnum; j++)			{				double x = (double)theFirst.x + (double)j * xrayStep;				double y = (double)theFirst.y + (double)i * xrayStep;				CPoint thePoint = CPoint(x, y);				matrixPs.push_back(thePoint);			}		}				int i = 0;		COTSParticleList matrixParts;		for (auto point : matrixPs)		{			COTSParticlePtr part = COTSParticlePtr(new COTSParticle());			COTSSegmentsList segs;			for (int i = 0; i < xrayStep; i++)			{				COTSSegmentPtr seg = COTSSegmentPtr(new COTSSegment());				seg->SetStart(point.x - xrayStep / 2);				seg->SetLength(xrayStep);				seg->SetHeight(point.y - xrayStep / 2 + i);				//auto originalSegs = segsOnTheSameHeight[seg->GetHeight()];				int currentH = seg->GetHeight();				int segStart = seg->GetStart();				int segEnd = seg->GetEnd();				if (segStart < 0) segStart = 0;				if (segEnd >= rect.Width()) segEnd = rect.Width()-1;				if (currentH >= rect.Height()) continue;				if (currentH < 0) continue;				seg->SetStart(segStart);				seg->SetEnd(segEnd);				segs.push_back(seg);						}			if (segs.size() > 0)			{								part->GetFeature()->SetSegmentsList(segs);				part->SetActualArea(xrayStep * xrayStep);				part->CalXRayPos();				part->SetFieldId(outFldData->GetId());				part->SetAnalysisId(i);				matrixParts.push_back(part);				i++;			}		}		outFldData->SetParticleList(matrixParts);				return true;		//-----------	}		CIntRangePtr COTSImageProcess::CalBackground(CBSEImgPtr m_pBSEImg)	{		auto ranges = CalcuGrayLevelRange(m_pBSEImg);		return ranges[0];	}	std::vector<CIntRangePtr> COTSImageProcess::CalcuGrayLevelRange(CBSEImgPtr m_pBSEImg)	{		CIntRangePtr pBackground = CIntRangePtr(new CIntRange());		WORD originChartData[MAXBYTE];		WORD firstSmoothChart[MAXBYTE];		WORD secondSmooth[MAXBYTE];		//1. get chart data		m_pBSEImg->SetChartData();			memcpy(originChartData, m_pBSEImg->GetBSEChart(), sizeof(WORD) * MAXBYTE);		originChartData[0] = 0;		originChartData[254] = 0;		linearSmooth5(originChartData, firstSmoothChart, MAXBYTE);		linearSmooth5(firstSmoothChart, secondSmooth, MAXBYTE);						//2. get down edge				int nLengthEdge = MAXBYTE + 2;		WORD n_aBSEChart[MAXBYTE + 2];		memset(n_aBSEChart, 0, sizeof(WORD) * nLengthEdge);		std::map<long, std::vector<int>> peakMap;// hold all the peaks in this spectrum which are sorted by there area.		std::vector<int> currentUpSeries;			std::vector<int> currentPeakSeries;		// make sure the wave begin with up edge and end with down edge		n_aBSEChart[0] = 0;		n_aBSEChart[nLengthEdge - 1] = 0;		memcpy(&n_aBSEChart[1], &secondSmooth, sizeof(WORD) * MAXBYTE);		int nLengthCom = MAXBYTE + 1;		// up edge		for (int i = 0; i < nLengthCom; i++)		{			if (n_aBSEChart[i] <= n_aBSEChart[i + 1])//this is a upward edge			{								if (currentPeakSeries.size() > 0)				{					int seriesSize = currentPeakSeries.size();					long area = 0;					for (int i = 0; i < seriesSize; i++)					{						area = area + n_aBSEChart[currentPeakSeries[i]];					}					peakMap[area] = currentPeakSeries;					currentPeakSeries.clear();				}				currentUpSeries.push_back(i + 1);// save all the continuous up edge			}			else//this is a downward edge			{				// encounter a downward edge means upward edge series end, 							if (currentUpSeries.size() > 0)				{										currentPeakSeries = currentUpSeries;					currentUpSeries.clear();				}				currentPeakSeries.push_back(i + 1);			}		}		if (currentPeakSeries.size() > 0)		{			int seriesSize = currentPeakSeries.size();			long area = 0;			for (int i = 0; i < seriesSize; i++)			{				area = area + n_aBSEChart[currentPeakSeries[i]];			}			peakMap[area] = currentPeakSeries;			currentPeakSeries.clear();		}		std::vector<CIntRangePtr> ranges;		std::map<long, std::vector<int>>::reverse_iterator it;		for (it=peakMap.rbegin();it!=peakMap.rend();it++)		{			CIntRangePtr pRange = CIntRangePtr(new CIntRange());			pRange->SetStart(it->second[0]);			pRange->SetEnd(it->second[it->second.size()-1]);			ranges.push_back(pRange);		}			return ranges;		}	void COTSImageProcess::GetSpecialGrayRangeImage(CBSEImgPtr a_pImgIn, CIntRangePtr a_SpecialGrayRange, CBSEImgPtr a_pBinImgOut, long& foundedPixelNum)	{		// the background  pixel will be 0,and the other part will be 255.		ASSERT(a_pImgIn);			int nWidthImg = a_pImgIn->GetWidth();		int nHeightImg = a_pImgIn->GetHeight();		long nImgSize = nWidthImg * nHeightImg;		BYTE* pTempImg = new BYTE[nImgSize];		BYTE* pSrcImg = a_pImgIn->GetImageDataPointer();		BYTE* pPixel = new byte[nImgSize];		long nBGStart;		long nBGEnd;			long nNumParticle = 0;				nBGStart = a_SpecialGrayRange->GetStart();			nBGEnd = a_SpecialGrayRange->GetEnd();						// delete background 			for (unsigned int i = 0; i < nImgSize; i++)			{				if (pSrcImg[i] >= nBGStart && pSrcImg[i] <= nBGEnd)				{					pPixel[i] = 255;					nNumParticle++;				}				else				{					pPixel[i] = 0;									}					}						BErode3(pPixel, pTempImg, 5, nHeightImg, nWidthImg);				BDilate3(pTempImg, pPixel, 5, nHeightImg, nWidthImg);											a_pBinImgOut->SetImageData(pPixel, nWidthImg, nHeightImg);		foundedPixelNum = nNumParticle;		delete[] pTempImg;		return;	}	void COTSImageProcess::RemoveBackGround(CBSEImgPtr a_pImgIn, COTSImageProcessParamPtr a_pImageProcessParam, CBSEImgPtr a_pBinImgOut/*,long& foundedPixelNum*/)	{		// the background  pixel will be 0,and the other part will be 255.		ASSERT(a_pImgIn);		ASSERT(a_pImageProcessParam);		int nWidthImg = a_pImgIn->GetWidth();		int nHeightImg = a_pImgIn->GetHeight();		long nImgSize = nWidthImg * nHeightImg;			BYTE* pSrcImg = a_pImgIn->GetImageDataPointer();		    BYTE* pPixel= new BYTE[nImgSize];		Mat srcImgMat = GetMatDataFromBseImg(a_pImgIn);		Mat rstMat;				long nBGStart;		long nBGEnd;		long nPartStart;		long nPartEnd;		long nNumParticle = 0;		if (a_pImageProcessParam->GetBGRemoveType() == OTS_BGREMOVE_TYPE::MANUAL)		{			nBGStart = a_pImageProcessParam->GetBGGray().GetStart();			nBGEnd = a_pImageProcessParam->GetBGGray().GetEnd();			nPartStart = a_pImageProcessParam->GetParticleGray().GetStart();			nPartEnd = a_pImageProcessParam->GetParticleGray().GetEnd();												//CVRemoveBG(srcImgMat, rstMat, nBGStart, nBGEnd);			RemoveBG_old(srcImgMat, rstMat, nBGStart, nBGEnd, nNumParticle);			pPixel = rstMat.data;							}		else		{					/*auto range = CalBackground(a_pImgIn);			nBGStart = range->GetStart();			nBGEnd = range->GetEnd();*/			switch (a_pImageProcessParam->GetAutoBGRemoveType())			{			case OTS_AUTOBGREMOVE_TYPE::DOWNWARD:								//RemoveBG_old(srcImgMat, rstMat, 0, nBGEnd, nNumParticle);				//CVRemoveBG(srcImgMat, rstMat, 0, nBGEnd, nNumParticle);				AutoRemove_background_OTS(srcImgMat, rstMat, 1);				break;			case OTS_AUTOBGREMOVE_TYPE::UPWARD:								//RemoveBG_old(srcImgMat, rstMat, nBGStart, 255, nNumParticle);				//CVRemoveBG(srcImgMat, rstMat, nBGStart, 255, nNumParticle);				AutoRemove_background_OTS(srcImgMat, rstMat, 0);				break;			case OTS_AUTOBGREMOVE_TYPE::MIDDLE:								//RemoveBG_old(srcImgMat, rstMat, nBGStart, nBGEnd, nNumParticle);				//CVRemoveBG(srcImgMat, rstMat, nBGStart, nBGEnd, nNumParticle);				AutoRemove_background_OTS(srcImgMat, rstMat, 2);				break;			default:				break;			}			pPixel = rstMat.data;							}		a_pBinImgOut->SetImageData(pPixel,nWidthImg,nHeightImg);				//foundedPixelNum = nNumParticle;		//foundedPixelNum = 100;						return ;	}	BOOL COTSImageProcess::GetParticles(long left, long top, long a_nWidth, long a_nHeight, const BYTE* a_pPixel, COTSParticleList& a_listParticles)	{		ASSERT(a_pPixel);		if (!a_pPixel)		{			return FALSE;		}		//a_listParticles.clear();		COTSParticleList findedParts;		COTSSegmentsList listSegment;		listSegment.clear();		//1. get segment line by line			if (!GetSegmentList(left, top, a_nWidth, a_nHeight, a_pPixel, listSegment))		{			return FALSE;		}		if ((int)listSegment.size() == 0)		{			return FALSE;		}		//2. save the temp feature		COTSFeatureList listFeature;		listFeature.clear();		if (!GetFeatureList(listSegment, listFeature))//get every feature for all the particle,the complete feature.		{			return FALSE;		}		if ((int)listFeature.size() == 0)		{			return FALSE;		}		/*COTSParticleList listParticles;		listParticles.clear();*/		if (!ChangeFeaturelist(listFeature, findedParts))		{			return FALSE;		}		for (auto f : findedParts)		{			a_listParticles.push_back(f);		}		return TRUE;	}	BOOL COTSImageProcess::GetOneParticleFromROI(long left, long top, long a_nWidth, long a_nHeight, const BYTE* a_pPixel, COTSParticleList& a_listParticles)	{		ASSERT(a_pPixel);		if (!a_pPixel)		{			return FALSE;		}		//a_listParticles.clear();		COTSParticleList findedParts;		COTSSegmentsList listSegment;		listSegment.clear();		//1. get segment line by line			if (!GetSegmentList(left, top, a_nWidth, a_nHeight, a_pPixel, listSegment))		{			return FALSE;		}		if ((int)listSegment.size() == 0)		{			return FALSE;		}		//2. save the temp feature		COTSFeatureList listFeature;		listFeature.clear();		COTSFeaturePtr fea = COTSFeaturePtr(new COTSFeature());				fea->SetSegmentsList(listSegment);				listFeature.push_back(fea);		if ((int)listFeature.size() == 0)		{			return FALSE;		}			if (!ChangeFeaturelist(listFeature, findedParts))		{			return FALSE;		}		for (auto f : findedParts)		{			a_listParticles.push_back(f);		}		return TRUE;	}	BOOL COTSImageProcess::GetSegmentList(long left, long top, long a_nWidth, long a_nHeight, const BYTE* a_pPixel, COTSSegmentsList& a_listSegments)	{		ASSERT(a_pPixel);				long nImgSize = a_nWidth * a_nHeight;		a_listSegments.clear();		//1. get segment line by line		long nLine, nm, nn;		long nStart = 0, nLength = 0;		for (nLine = 0; nLine < a_nHeight; nLine++)		{			for (nm = 0; nm < a_nWidth; nm += (nLength + 1))			{				nLength = 0;				// get start				if (*(a_pPixel + nLine * a_nWidth + nm) != 0)				{					nStart = nm;					nLength++;					//get length					for (nn = nm + 1; nn < a_nWidth; nn++)					{						// check if segment is over, break						if (nLength != 0)						{							if (*(a_pPixel + nLine * a_nWidth + nn) == 0)								break;						}						if (*(a_pPixel + nLine * a_nWidth + nn) != 0)						{							nLength++;						}					}					// generate segment					COTSSegmentPtr pSegment = COTSSegmentPtr(new COTSSegment(nLine + top, nStart + left, nLength));					a_listSegments.push_back(pSegment);				}				else				{					continue;				}			}		}		if ((int)a_listSegments.size() == 0)		{			//LogErrorTrace(__FILE__, __LINE__, _T("no particle is found."));			return FALSE;		}		return TRUE;	}	BOOL COTSImageProcess::GetFeatureList(COTSSegmentsList& a_listSegments, COTSFeatureList& a_listFeatures)	{		COTSSegmentsList listSegmentNew;		std::map<long, COTSSegmentsList > mapOneLineSegments;		for each (auto s in a_listSegments)		{			mapOneLineSegments[s->GetHeight()].push_back(s);//sorting all the segments base on the line number.		}		std::map<long, COTSSegmentsList >::iterator lineItr = mapOneLineSegments.begin();//find the highest line		while (lineItr != mapOneLineSegments.end())		{			for (auto s = lineItr->second.begin(); s < lineItr->second.end(); )//find  one segment of this line.			{				COTSSegmentPtr bottomSeg = *s;				listSegmentNew.clear();				listSegmentNew.push_back(*s);				s = lineItr->second.erase(s);				std::map<long, COTSSegmentsList >::iterator tempItr = lineItr;				tempItr++;				for (; tempItr != mapOneLineSegments.end(); tempItr++)//find all other lines of segments				{					if (tempItr->first - bottomSeg->GetHeight() > 1)					{						break;					}					for (auto nextLineSegment = tempItr->second.begin(); nextLineSegment < tempItr->second.end();)//find next line's all segments					{						if (((*nextLineSegment)->GetStart() - (bottomSeg->GetStart() + bottomSeg->GetLength())) > 1)						{							break;						}						if (bottomSeg->UpDownConection(**nextLineSegment))						{							listSegmentNew.push_back(*nextLineSegment);							bottomSeg = *nextLineSegment;							nextLineSegment = tempItr->second.erase(nextLineSegment);							break;						}						if (tempItr->second.size() > 0)						{							nextLineSegment++;						}						else						{							break;						}					}				}				COTSFeaturePtr pFeature = COTSFeaturePtr(new COTSFeature());				pFeature->SetSegmentsList(listSegmentNew);				//check if this new feature is connected with other found feature.				COTSSegmentPtr topSeg = listSegmentNew[0];//find the toppest segment of this new feature.				COTSSegmentPtr bottomSegment = listSegmentNew[listSegmentNew.size() - 1];//find the lowest segment of this new feature.				bool haveMerged = false;				for each (auto f in a_listFeatures)				{					for (auto seg : f->GetSegmentsList())					{						if (bottomSegment->UpDownConection(*seg) || topSeg->UpDownConection(*seg))						{							COTSSegmentsList segs = f->GetSegmentsList();							for (auto s : listSegmentNew)							{								segs.push_back(s);							}							f->SetSegmentsList(segs);							haveMerged = true;							break;						}					}					if (haveMerged)					{						break;					}				}				if (!haveMerged)				{					a_listFeatures.push_back(pFeature);				}				if (lineItr->second.size() == 0)				{					break;				}			}			lineItr++;		}		return true;	}	BOOL COTSImageProcess::ChangeFeaturelist(COTSFeatureList& a_listFeatures, COTSParticleList& a_listParticle)	{			for (auto pFeature : a_listFeatures)		{			COTSParticlePtr pParticle = COTSParticlePtr(new COTSParticle());			pParticle->SetFeature(pFeature);				a_listParticle.push_back(pParticle);		}		if ((int)a_listParticle.size() == 0)		{			return FALSE;		}		return TRUE;	}		 BOOL COTSImageProcess::CalcuParticleImagePropertes(COTSParticlePtr a_pOTSPart, double a_PixelSize)	{			//--------- convert this particle data to image data,construct an image only with this particle.------		const int nExpand_Size = 3;		const int nWhiteColor = 0;		const int nThickness = 1;		// lineType Type of the line		const int nLineType = 8;		// get rectangle of the particle		CRect rect = a_pOTSPart->GetParticleRect();		if (a_pOTSPart->GetActualArea() < 30 * a_PixelSize)// the particle is too small that openCV can't calculate a width value of it. Then we take the upright rect of the particle as it's minArea rect.		{			double w = 0, h = 0;			w = (double)rect.Width()*a_PixelSize;			h = (double)rect.Height()*a_PixelSize;			a_pOTSPart->SetDMax(MAX(w, h));			a_pOTSPart->SetDMin(MIN(w, h));			a_pOTSPart->SetDMean((w + h) / 2);			a_pOTSPart->SetFeretDiameter((w + h) / 2);			a_pOTSPart->SetDElong(MAX(w, h));			a_pOTSPart->SetPerimeter((w+h)*2);			a_pOTSPart->SetDPerp(MIN(w, h));			a_pOTSPart->SetDInscr(MIN(w, h));			a_pOTSPart->SetMinWidth(w);			a_pOTSPart->SetMinHeight(h);			return true;		}		// calculate the particle image data size, expand 3 pixel at the edge		Mat particleImage = Mat::zeros(rect.Height() + nExpand_Size , rect.Width() + nExpand_Size , CV_8U);		// get the segment list		COTSSegmentsList listSegment = a_pOTSPart->GetFeature()->GetSegmentsList();		for (auto pSegment : listSegment)		{			int nStart = pSegment->GetStart() - rect.left + nExpand_Size;			int nEnd = pSegment->GetStart() + pSegment->GetLength() - rect.left - 1 + nExpand_Size;			int nHeight = pSegment->GetHeight() - rect.top + nExpand_Size;			line(particleImage, Point(nStart, nHeight), Point(nEnd, nHeight), Scalar(nBlackColor), nThickness, nLineType);		}			//--------abstract the contour of the particle.			vector<vector<Point>>contours;			findContours(particleImage, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);		if (contours.size()==0)// the particle is too odd that openCV can't find a contour of it. Then we take the upright rect of the particle as it's minArea rect.		{			double w = 0, h = 0;			w = (double)rect.Width()*a_PixelSize;			h = (double)rect.Height()*a_PixelSize;			a_pOTSPart->SetDMax(MAX(w, h));			a_pOTSPart->SetDMin(MIN(w, h));			a_pOTSPart->SetDMean((w + h) / 2);			a_pOTSPart->SetFeretDiameter((w + h) / 2);			a_pOTSPart->SetDElong(MAX(w, h));			a_pOTSPart->SetPerimeter((w + h) * 2);			a_pOTSPart->SetDPerp(MIN(w, h));			a_pOTSPart->SetDInscr(MIN(w, h));			a_pOTSPart->SetMinWidth(w);			a_pOTSPart->SetMinHeight(h);			return true;		}		int imaxcontour = 0, imax = 0;		for (unsigned int i = 0; i < contours.size(); i++) {                  			int itmp = contourArea(contours[i]);			if (imaxcontour < itmp) {				imax = i;				imaxcontour = itmp;			}		}		vector<Point > listEdge = contours[imax];				vector<vector<Point>>Outcontours;		Outcontours.push_back(listEdge);		//---------calculate the minimium  rectangle 		auto rRect = cv::minAreaRect(listEdge);		Point2f p[4];		rRect.points(p);		int D_MIN =getDistance(p[0], p[1]);		int D_MinRecLen = 0;//minareaRect's length(the longger side).		for (int j = 0; j <= 2; j++)		{			//line(cvContourImg, p[j], p[(j + 1) % 4], Scalar(100, 100, 0), 2);			int d = getDistance(p[j], p[j + 1]);			if (d < D_MIN)			{				D_MIN = d;			}			if (d > D_MinRecLen)			{				D_MinRecLen = d;			}		}		a_pOTSPart->SetDMin(D_MIN*a_PixelSize);		a_pOTSPart->SetMinWidth(rRect.size.width);		a_pOTSPart->SetMinHeight(rRect.size.height);		//----------calculate the perimeter		double d = arcLength(listEdge, true);		a_pOTSPart->SetPerimeter(d*a_PixelSize);		//-----------calculate the Max Diameter. Find the min enclosing circle first ,then find the two farthest circle connected point.		Point2f center; float radius;		minEnclosingCircle(listEdge, center, radius);		//circle(cvContourImg, center, radius, Scalar(100), 2);		std::vector <Point> outContour = listEdge;				std::vector <Point> rst;		for (unsigned int k = 0; k < outContour.size(); k++)		{			Point p = outContour[k];			double d = sqrt(pow((p.x - center.x), 2) + pow((p.y - center.y), 2));			if (fabs(d - radius) < 0.01)			{				rst.push_back(p);			}		}		double D_MAX = 0;		Point lineDmax[2];		for (unsigned int m = 0; m < rst.size(); m++)		{			Point p = rst[m];			for (unsigned int n = m + 1; n < rst.size(); n++)			{				Point p1 = rst[n];				double d = sqrt(powf((p.x - p1.x), 2) + powf((p.y - p1.y), 2));				if (d > D_MAX)				{					D_MAX = d;					lineDmax[0] = p;					lineDmax[1] = p1;				}			}		}		a_pOTSPart->SetDMax(D_MAX*a_PixelSize);				//--------calculate the D_PERP property using the D_MAX's two endpoints.		std::vector<Point> curve1;		std::vector<Point> curve2;		for (unsigned int i = 0; i < outContour.size(); i++)		{			Point pt = outContour[i];			bool start = false;			int clockwise = Side(lineDmax[0], lineDmax[1], pt);// devide these points into two group ,separate into the two sides.			if (clockwise > 0)			{				curve1.push_back(pt);			}			else			{				curve2.push_back(pt);			}		}		double d_perp1 = 0, d_perp2 = 0;		for (unsigned int i = 0; i < curve1.size(); i++)		{			double d = getDist_P2L(curve1[i], lineDmax[0], lineDmax[1]);			if (d > d_perp1)			{				d_perp1 = d;			}		}		for (unsigned int i = 0; i < curve2.size(); i++)		{			double d = getDist_P2L(curve2[i], lineDmax[0], lineDmax[1]);			if (d > d_perp2)			{				d_perp2 = d;			}		}		a_pOTSPart->SetDPerp((d_perp1 + d_perp2)*a_PixelSize);		//----------find the  diameter of max inscribed circle		int r;		Point inscribeCirclecenter;		FindInnerCircleInContour(outContour, inscribeCirclecenter, r);		//--------------------------------------------------------calculate the xraypos !				CRect rec = a_pOTSPart->GetParticleRect();			a_pOTSPart->SetXRayPos(CPoint(inscribeCirclecenter.x - nExpand_Size + rec.left - 1, inscribeCirclecenter.y - nExpand_Size + rec.top - 1));			a_pOTSPart->SetDInscr(r * 2 * a_PixelSize);		//---------------calculate the image other caracater: length/width  realArea/minRectangeArea etc. we can use these propertes to do forward process.		double minRectArea = D_MIN * D_MinRecLen*a_PixelSize*a_PixelSize;//離鬼棍쌈앤近충생		double fillRatio = a_pOTSPart->GetActualArea() / minRectArea;//茄셥충생宅離鬼棍쌈앤近충생궐,that's the fill rate.		double lengthWidthRatio;		lengthWidthRatio = (double)D_MinRecLen / D_MIN;//낀욱궐			 //decide if this shape is a strip shape :if the lenthWidthRatio>2 then it is. if the lengthWidthRatio<2 and  the areaRatio<0.5 then it is.		bool isStripShape = false;		double curveLength = 0;		double D_MEAN=0;		Moments mu;		mu = moments(listEdge, false);		int nx = mu.m10 / mu.m00;		int ny = mu.m01 / mu.m00;		//circle(cvcopyImg, Point(nx, ny), 1, (255), 1);		Point ptCenter = Point((int)nx, (int)ny);		if (pointPolygonTest(listEdge, ptCenter, false) != 1)// the center point doesn't contain in the contour, we think it as curve shape.		{			isStripShape = true;		}		/*if (lengthWidthRatio >= 2 )// in PartA software this is true,but IncA because of the GB definition the everage feret diameter is always the mean value of all the chord.		{						isStripShape = true;		}*/				if (fillRatio <= 0.4)// only when the fill rate is very low,we think it as a curve shape,then we choose the mean width as the feret diameter.		{			isStripShape = true;		}				if (isStripShape)		{			curveLength = a_pOTSPart->GetPerimeter()/2 - a_pOTSPart->GetDInscr()/2;// thinking this particle as a strip rectangle.the width is the max inscribe circle diameter/2.			if (curveLength < D_MAX)			{				curveLength = D_MAX;			}			if (curveLength < MIN_DOUBLE_VALUE || a_pOTSPart->GetActualArea()<MIN_DOUBLE_VALUE)			{				D_MEAN = 0;			}			else			{				D_MEAN = a_pOTSPart->GetActualArea() / curveLength;			}						a_pOTSPart->SetDMean(D_MEAN*a_PixelSize);			a_pOTSPart->SetFeretDiameter(D_MEAN*a_PixelSize);			a_pOTSPart->SetDElong (curveLength*a_PixelSize);		}		else//it's a ball shape particle		{			curveLength = D_MAX;			double ftd = 0, maxD = 0, minD = 0, dratio = 0;			GetParticleAverageChord(outContour, a_PixelSize, ftd);						a_pOTSPart->SetDMean(ftd);			a_pOTSPart->SetFeretDiameter(ftd);			a_pOTSPart->SetDElong(curveLength*a_PixelSize);		}				if (a_pOTSPart->GetAspectRatio() > 2)		{			double angle;			if (rRect.size.width > rRect.size.height) // w > h			{				angle = abs(rRect.angle);			}			else			{				angle = 90.0 + abs(rRect.angle);			}			a_pOTSPart->SetOrientation(angle);		}		else		{			a_pOTSPart->SetOrientation(0);		}			return true;			}				void COTSImageProcess::ImshowImage(CBSEImgPtr img)	{		BYTE* data = img->GetImageDataPointer();		//Mat cvImg;		cv::Size s;		s.width = img->GetImageSize().cx;		s.height = img->GetImageSize().cy;		Mat cvImg=Mat::zeros(s, CV_8U);		cvImg.data = data;			cv::imshow("dd", cvImg);	    cv::waitKey();		}	void COTSImageProcess::ImshowChartData(CBSEImgPtr img)	{		img->SetChartData();		WORD* data = img->GetBSEChart();		//Mat cvImg;		cv::Size s;		s.width = 255;		s.height = 100;		Mat cvImg = Mat::zeros(s, CV_8U);		//cvImg.data = data;		WORD nBSEChart[MAXBYTE];		//1. get chart data			linearSmooth5(data, nBSEChart, MAXBYTE);		for (int i=1;i<255;i++)		{						line(cvImg, Point(i, 100-nBSEChart[i]), Point(i+1, 100-nBSEChart[i+1]), Scalar(nBlackColor), 1, 8);		}		cv::imshow("chart", cvImg);		cv::waitKey();	}		BOOL COTSImageProcess::MergeBigBoundaryParticles(COTSFieldDataList allFields,double pixelSize,int scanFieldSize, CSize ResolutionSize, COTSParticleList& mergedParts)	{		class BorderPart		{			typedef std::shared_ptr<BorderPart>  CBorderPartPtr;			BorderPart(COTSParticlePtr p)			{				myPart = p;				headerParticle = NULL;			}		public:			COTSParticlePtr myPart;			COTSParticle* headerParticle;//used to merge particles ,if this particle has been merged then this pointer will point to the first particle of these merged particles or else it's NULL.								static std::vector<CBorderPartPtr> ConvertPartToBorderPart(COTSParticleList parts)			{				static std::map<COTSParticle*, CBorderPartPtr> allborderPart;				std::vector<CBorderPartPtr> borderParts;				for (auto p : parts)				{					if (allborderPart.find(p.get()) == allborderPart.end())					{						auto borderp = CBorderPartPtr(new BorderPart(p));						borderParts.push_back(borderp);						allborderPart[p.get()] = borderp;					}					else					{						borderParts.push_back(allborderPart[p.get()]);					}									}				return borderParts;						}		};		auto FldMgr = new CFieldMgr(scanFieldSize, ResolutionSize);			std::map<COTSParticle*, COTSParticleList> mapMergeParticles;//hold up all the boundary connected particles. the pair's first is also the member of these particles.		std::map<COTSParticle*, COTSSegmentsList> mapMergedSegments;//hold up all the segment's corresponding clone in the connected particles.		for (auto centerfld : allFields)		{			// find neighbor field on the left.			auto leftFld = FldMgr->FindNeighborField(allFields, centerfld, SORTING_DIRECTION::LEFT);			if (leftFld != nullptr)			{				auto lParts = centerfld->GetLeftBorderedBigParticles();				auto rParts = leftFld->GetRightBorderedBigParticles();				auto leftParts = BorderPart::ConvertPartToBorderPart(lParts);				auto rightParts = BorderPart::ConvertPartToBorderPart(rParts);				for (auto leftp : leftParts)				{					for (auto rightp : rightParts)					{						if (leftp->myPart->IsConnected(rightp->myPart.get(), centerfld->Width, centerfld->Height, (int)SORTING_DIRECTION::LEFT))						{							if (leftp->headerParticle != NULL)							{								if (rightp->headerParticle == NULL)								{									rightp->headerParticle = leftp->headerParticle;									mapMergeParticles[leftp->headerParticle].push_back(rightp->myPart);								}							}							else							{								if (rightp->headerParticle != NULL)								{									leftp->headerParticle = rightp->myPart.get();									mapMergeParticles[rightp->myPart.get()].push_back(leftp->myPart);								}								else								{									leftp->headerParticle = leftp->myPart.get();									rightp->headerParticle = leftp->myPart.get();									mapMergeParticles[leftp->myPart.get()].push_back(rightp->myPart);								}							}						}					}				}			}			//find neighbor field on the upward			auto upFld = FldMgr->FindNeighborField(allFields, centerfld, SORTING_DIRECTION::UP);			if (upFld != nullptr)			{				auto topBorderParts = centerfld->GetTopBorderedBigParticles();				auto bottomBorderParts = upFld->GetBottomBorderedBigParticles();				auto upParts = BorderPart::ConvertPartToBorderPart(topBorderParts);				auto downParts = BorderPart::ConvertPartToBorderPart(bottomBorderParts);				for (auto upprt : upParts)				{					for (auto downprt : downParts)					{						if (upprt->myPart->IsConnected(downprt->myPart.get(), centerfld->Width, centerfld->Height, (int)SORTING_DIRECTION::UP))						{							if (upprt->headerParticle != NULL)							{								if (downprt->headerParticle == NULL)								{									downprt->headerParticle = upprt->headerParticle;									mapMergeParticles[upprt->headerParticle].push_back(downprt->myPart);								}							}							else							{								if (downprt->headerParticle != NULL)								{									upprt->headerParticle = downprt->headerParticle;									mapMergeParticles[downprt->myPart.get()].push_back(upprt->myPart);								}								else								{									upprt->headerParticle = upprt->myPart.get();									downprt->headerParticle = upprt->myPart.get();									mapMergeParticles[upprt->myPart.get()].push_back(downprt->myPart);								}							}						}					}				}			}			//find neighbor field on the downward.			auto downFld = FldMgr->FindNeighborField(allFields, centerfld,SORTING_DIRECTION::DOWN);			if (downFld != nullptr)			{				auto bottomParts = centerfld->GetBottomBorderedBigParticles();				auto topParts = downFld->GetTopBorderedBigParticles();				auto downParts = BorderPart::ConvertPartToBorderPart(bottomParts);				auto upParts= BorderPart::ConvertPartToBorderPart(topParts);				for (auto downprt : downParts)				{					for (auto upprt : upParts)					{						if (downprt->myPart->IsConnected(upprt->myPart.get(), centerfld->Width, centerfld->Height, (int)SORTING_DIRECTION::DOWN))						{							if (downprt->headerParticle != NULL)							{								if (upprt->headerParticle == NULL)								{									upprt->headerParticle = downprt->headerParticle;									mapMergeParticles[downprt->headerParticle].push_back(upprt->myPart);								}							}							else							{								if (upprt->headerParticle != NULL)								{									downprt->headerParticle = upprt->headerParticle;									mapMergeParticles[upprt->headerParticle].push_back(downprt->myPart);								}								else								{									downprt->headerParticle = downprt->myPart.get();									upprt->headerParticle = downprt->myPart.get();									mapMergeParticles[downprt->myPart.get()].push_back(upprt->myPart);								}							}						}					}				}			}			//find neighbor field on the right.			auto rightFld = FldMgr->FindNeighborField(allFields, centerfld, SORTING_DIRECTION::RIGHT);			if (rightFld != nullptr)			{				auto rParts = centerfld->GetRightBorderedBigParticles();				auto lParts = rightFld->GetLeftBorderedBigParticles();				auto rightParts = BorderPart::ConvertPartToBorderPart(rParts);				auto leftParts = BorderPart::ConvertPartToBorderPart(lParts);				for (auto rightprt : rightParts)				{					for (auto leftprt : leftParts)					{						if (rightprt->myPart->IsConnected(leftprt->myPart.get(), centerfld->Width, centerfld->Height, (int)SORTING_DIRECTION::RIGHT))						{							if (rightprt->headerParticle != NULL)							{								if (leftprt->headerParticle == NULL)								{									leftprt->headerParticle = rightprt->headerParticle;									mapMergeParticles[rightprt->headerParticle].push_back(leftprt->myPart);								}							}							else							{								if (leftprt->headerParticle != NULL)								{									rightprt->headerParticle = leftprt->headerParticle;									mapMergeParticles[leftprt->headerParticle].push_back(rightprt->myPart);								}								else								{									rightprt->headerParticle = rightprt->myPart.get();									leftprt->headerParticle = rightprt->myPart.get();									mapMergeParticles[rightprt->myPart.get()].push_back(leftprt->myPart);								}							}						}					}				}			}		}		/*for (auto particle : mapMergeParticles)		{					}*/		static int partTagId;		for (auto pair : mapMergeParticles)		{			struct EleAreaPercentage			{				EleAreaPercentage(double p, CElementChemistryPtr e)				{					areaPercentage = p;					eleData = e;				}				double areaPercentage;				CElementChemistryPtr eleData;			};			auto newPart = COTSParticlePtr(new COTSParticle());			COTSSegmentsList newSegs;			auto p = pair.first;			newPart->SetSEMPos(p->GetSEMPos());						//firstly,we sum up all the merged particles's area and get the represent string.			std::string partsStr = std::to_string(p->GetFieldId()) + ":" + std::to_string(p->GetAnalysisId());			double allPartArea = p->GetActualArea();//Get the first particle's area.			for (auto other : pair.second)// Get the total area of all these particles for  the use of ele calcu.			{				partsStr += "," + std::to_string(other->GetFieldId()) + ":" + std::to_string(other->GetAnalysisId());//Get the subparticles string such as "1:1,2:1" etc.				allPartArea += other->GetActualArea();//Get other particle's area			}			// calculate all the new segment's position.			std::vector <COTSParticle*> allSubParts;			allSubParts.push_back(p);			for (auto other : pair.second)// Get the total area of all these particles for  the use of ele calcu.			{				allSubParts.push_back(other.get());			}			for (auto subp : allSubParts)			{				int fid = subp->GetFieldId();				CPoint myFldPos;				for (auto f : allFields)//find  this particle's filed.				{					if (f->GetId() == fid)					{						myFldPos = f->GetPosition();					}				}				int fldWidth = allFields[0]->Width;				int fldHeight = allFields[0]->Height;				CPoint fldLeftUpPos = CPoint(myFldPos.x + fldWidth / 2 , myFldPos.y + fldHeight / 2 );				for (auto s : subp->GetFeature()->GetSegmentsList())				{					COTSSegmentPtr newseg = COTSSegmentPtr(new COTSSegment());					newseg->SetStart(s->GetStart()  + fldLeftUpPos.x);					newseg->SetHeight((0 - s->GetHeight()) + fldLeftUpPos.y);//the coordinate system of segment in a field is different with the OTS coordinate system.OTS system's y axis is upward positive ,yet the field is downward positive.					newseg->SetLength(s->GetLength());					newSegs.push_back(newseg);				}			}			COTSFeaturePtr newFeature = COTSFeaturePtr(new COTSFeature());			newFeature->SetSegmentsList(newSegs);			newPart->SetFeature(newFeature);			newPart->CalCoverRectFromSegment();			//second, we get all the element data and their  area percentage .			std::map<std::string, std::vector<EleAreaPercentage>> mapEleData;			CPosXrayPtr pXray1 = p->GetXrayInfo();			if (pXray1 != nullptr)			{				for (auto ele : pXray1->GetElementQuantifyData())				{					mapEleData[ele->GetName().GetBuffer()].push_back(EleAreaPercentage(p->GetActualArea() / allPartArea, ele));				}			}						for (auto other : pair.second)			{				auto otherXray = other->GetXrayInfo();				if (otherXray != nullptr)				{					for (auto eledata : otherXray->GetElementQuantifyData())					{						mapEleData[eledata->GetName().GetBuffer()].push_back(EleAreaPercentage(other->GetActualArea() / allPartArea, eledata));					}				}							}			// third,we calculate all the element's new percentage data and get a new element chemistry list.			CElementChemistriesList newCheList;			for (auto eledata : mapEleData)			{				CElementChemistryPtr newEleche = CElementChemistryPtr(new CElementChemistry());				newEleche->SetName(CString(eledata.first.c_str()));				double newPercentage = 0;				for (auto d : eledata.second)				{					newPercentage += d.areaPercentage * d.eleData->GetPercentage();				}				newEleche->SetPercentage(newPercentage);				newCheList.push_back(newEleche);			}			CPosXrayPtr xray(new CPosXray());			xray->SetElementQuantifyData(newCheList);			newPart->SetXrayInfo(xray);			newPart->SetConnectedParticlesSequentialString(partsStr);			newPart->SetActualArea(allPartArea);			partTagId++;			newPart->SetParticleId(partTagId);			newPart->SetAnalysisId(partTagId);			std::string name = p->GetClassifyName();			newPart->SetClassifyName(name);			newPart->SetColor(p->GetColor());			mergedParts.push_back(newPart);		}		return true;	}			}
 |