| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709 | // Copyright (C) 2001 Jeremy Siek, Douglas Gregor, Brian Osman//// Distributed under the Boost Software License, Version 1.0. (See// accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_GRAPH_ISOMORPHISM_HPP#define BOOST_GRAPH_ISOMORPHISM_HPP#include <utility>#include <vector>#include <iterator>#include <algorithm>#include <boost/config.hpp>#include <boost/assert.hpp>#include <boost/smart_ptr.hpp>#include <boost/graph/depth_first_search.hpp>#include <boost/detail/algorithm.hpp>#include <boost/pending/indirect_cmp.hpp> // for make_indirect_pmap#include <boost/concept/assert.hpp>#ifndef BOOST_GRAPH_ITERATION_MACROS_HPP#define BOOST_ISO_INCLUDED_ITER_MACROS // local macro, see bottom of file#include <boost/graph/iteration_macros.hpp>#endifnamespace boost{namespace detail{    template < typename Graph1, typename Graph2, typename IsoMapping,        typename Invariant1, typename Invariant2, typename IndexMap1,        typename IndexMap2 >    class isomorphism_algo    {        typedef typename graph_traits< Graph1 >::vertex_descriptor vertex1_t;        typedef typename graph_traits< Graph2 >::vertex_descriptor vertex2_t;        typedef typename graph_traits< Graph1 >::edge_descriptor edge1_t;        typedef typename graph_traits< Graph1 >::vertices_size_type size_type;        typedef typename Invariant1::result_type invar1_value;        typedef typename Invariant2::result_type invar2_value;        const Graph1& G1;        const Graph2& G2;        IsoMapping f;        Invariant1 invariant1;        Invariant2 invariant2;        std::size_t max_invariant;        IndexMap1 index_map1;        IndexMap2 index_map2;        std::vector< vertex1_t > dfs_vertices;        typedef typename std::vector< vertex1_t >::iterator vertex_iter;        std::vector< int > dfs_num_vec;        typedef safe_iterator_property_map<            typename std::vector< int >::iterator, IndexMap1#ifdef BOOST_NO_STD_ITERATOR_TRAITS            ,            int, int&#endif /* BOOST_NO_STD_ITERATOR_TRAITS */            >            DFSNumMap;        DFSNumMap dfs_num;        std::vector< edge1_t > ordered_edges;        typedef typename std::vector< edge1_t >::iterator edge_iter;        std::vector< char > in_S_vec;        typedef safe_iterator_property_map<            typename std::vector< char >::iterator, IndexMap2#ifdef BOOST_NO_STD_ITERATOR_TRAITS            ,            char, char&#endif /* BOOST_NO_STD_ITERATOR_TRAITS */            >            InSMap;        InSMap in_S;        int num_edges_on_k;        friend struct compare_multiplicity;        struct compare_multiplicity        {            compare_multiplicity(Invariant1 invariant1, size_type* multiplicity)            : invariant1(invariant1), multiplicity(multiplicity)            {            }            bool operator()(const vertex1_t& x, const vertex1_t& y) const            {                return multiplicity[invariant1(x)]                    < multiplicity[invariant1(y)];            }            Invariant1 invariant1;            size_type* multiplicity;        };        struct record_dfs_order : default_dfs_visitor        {            record_dfs_order(                std::vector< vertex1_t >& v, std::vector< edge1_t >& e)            : vertices(v), edges(e)            {            }            void discover_vertex(vertex1_t v, const Graph1&) const            {                vertices.push_back(v);            }            void examine_edge(edge1_t e, const Graph1&) const            {                edges.push_back(e);            }            std::vector< vertex1_t >& vertices;            std::vector< edge1_t >& edges;        };        struct edge_cmp        {            edge_cmp(const Graph1& G1, DFSNumMap dfs_num)            : G1(G1), dfs_num(dfs_num)            {            }            bool operator()(const edge1_t& e1, const edge1_t& e2) const            {                using namespace std;                int u1 = dfs_num[source(e1, G1)], v1 = dfs_num[target(e1, G1)];                int u2 = dfs_num[source(e2, G1)], v2 = dfs_num[target(e2, G1)];                int m1 = (max)(u1, v1);                int m2 = (max)(u2, v2);                // lexicographical comparison                return std::make_pair(m1, std::make_pair(u1, v1))                    < std::make_pair(m2, std::make_pair(u2, v2));            }            const Graph1& G1;            DFSNumMap dfs_num;        };    public:        isomorphism_algo(const Graph1& G1, const Graph2& G2, IsoMapping f,            Invariant1 invariant1, Invariant2 invariant2,            std::size_t max_invariant, IndexMap1 index_map1,            IndexMap2 index_map2)        : G1(G1)        , G2(G2)        , f(f)        , invariant1(invariant1)        , invariant2(invariant2)        , max_invariant(max_invariant)        , index_map1(index_map1)        , index_map2(index_map2)        {            in_S_vec.resize(num_vertices(G1));            in_S = make_safe_iterator_property_map(                in_S_vec.begin(), in_S_vec.size(), index_map2#ifdef BOOST_NO_STD_ITERATOR_TRAITS                ,                in_S_vec.front()#endif /* BOOST_NO_STD_ITERATOR_TRAITS */            );        }        bool test_isomorphism()        {            // reset isomapping            BGL_FORALL_VERTICES_T(v, G1, Graph1)            f[v] = graph_traits< Graph2 >::null_vertex();            {                std::vector< invar1_value > invar1_array;                BGL_FORALL_VERTICES_T(v, G1, Graph1)                invar1_array.push_back(invariant1(v));                sort(invar1_array);                std::vector< invar2_value > invar2_array;                BGL_FORALL_VERTICES_T(v, G2, Graph2)                invar2_array.push_back(invariant2(v));                sort(invar2_array);                if (!equal(invar1_array, invar2_array))                    return false;            }            std::vector< vertex1_t > V_mult;            BGL_FORALL_VERTICES_T(v, G1, Graph1)            V_mult.push_back(v);            {                std::vector< size_type > multiplicity(max_invariant, 0);                BGL_FORALL_VERTICES_T(v, G1, Graph1)                ++multiplicity.at(invariant1(v));                sort(                    V_mult, compare_multiplicity(invariant1, &multiplicity[0]));            }            std::vector< default_color_type > color_vec(num_vertices(G1));            safe_iterator_property_map<                std::vector< default_color_type >::iterator, IndexMap1#ifdef BOOST_NO_STD_ITERATOR_TRAITS                ,                default_color_type, default_color_type&#endif /* BOOST_NO_STD_ITERATOR_TRAITS */                >                color_map(color_vec.begin(), color_vec.size(), index_map1);            record_dfs_order dfs_visitor(dfs_vertices, ordered_edges);            typedef color_traits< default_color_type > Color;            for (vertex_iter u = V_mult.begin(); u != V_mult.end(); ++u)            {                if (color_map[*u] == Color::white())                {                    dfs_visitor.start_vertex(*u, G1);                    depth_first_visit(G1, *u, dfs_visitor, color_map);                }            }            // Create the dfs_num array and dfs_num_map            dfs_num_vec.resize(num_vertices(G1));            dfs_num = make_safe_iterator_property_map(                dfs_num_vec.begin(), dfs_num_vec.size(), index_map1#ifdef BOOST_NO_STD_ITERATOR_TRAITS                ,                dfs_num_vec.front()#endif /* BOOST_NO_STD_ITERATOR_TRAITS */            );            size_type n = 0;            for (vertex_iter v = dfs_vertices.begin(); v != dfs_vertices.end();                 ++v)                dfs_num[*v] = n++;            sort(ordered_edges, edge_cmp(G1, dfs_num));            int dfs_num_k = -1;            return this->match(ordered_edges.begin(), dfs_num_k);        }    private:        struct match_continuation        {            enum            {                pos_G2_vertex_loop,                pos_fi_adj_loop,                pos_dfs_num            } position;            typedef typename graph_traits< Graph2 >::vertex_iterator                vertex_iterator;            std::pair< vertex_iterator, vertex_iterator > G2_verts;            typedef typename graph_traits< Graph2 >::adjacency_iterator                adjacency_iterator;            std::pair< adjacency_iterator, adjacency_iterator > fi_adj;            edge_iter iter;            int dfs_num_k;        };        bool match(edge_iter iter, int dfs_num_k)        {            std::vector< match_continuation > k;            typedef typename graph_traits< Graph2 >::vertex_iterator                vertex_iterator;            std::pair< vertex_iterator, vertex_iterator > G2_verts(                vertices(G2));            typedef typename graph_traits< Graph2 >::adjacency_iterator                adjacency_iterator;            std::pair< adjacency_iterator, adjacency_iterator > fi_adj;            vertex1_t i, j;        recur:            if (iter != ordered_edges.end())            {                i = source(*iter, G1);                j = target(*iter, G1);                if (dfs_num[i] > dfs_num_k)                {                    G2_verts = vertices(G2);                    while (G2_verts.first != G2_verts.second)                    {                        {                            vertex2_t u = *G2_verts.first;                            vertex1_t kp1 = dfs_vertices[dfs_num_k + 1];                            if (invariant1(kp1) == invariant2(u)                                && in_S[u] == false)                            {                                {                                    f[kp1] = u;                                    in_S[u] = true;                                    num_edges_on_k = 0;                                    match_continuation new_k;                                    new_k.position = match_continuation::                                        pos_G2_vertex_loop;                                    new_k.G2_verts = G2_verts;                                    new_k.iter = iter;                                    new_k.dfs_num_k = dfs_num_k;                                    k.push_back(new_k);                                    ++dfs_num_k;                                    goto recur;                                }                            }                        }                    G2_loop_k:                        ++G2_verts.first;                    }                }                else if (dfs_num[j] > dfs_num_k)                {                    {                        vertex1_t vk = dfs_vertices[dfs_num_k];                        num_edges_on_k -= count_if(adjacent_vertices(f[vk], G2),                            make_indirect_pmap(in_S));                        for (int jj = 0; jj < dfs_num_k; ++jj)                        {                            vertex1_t j = dfs_vertices[jj];                            num_edges_on_k                                -= count(adjacent_vertices(f[j], G2), f[vk]);                        }                    }                    if (num_edges_on_k != 0)                        goto return_point_false;                    fi_adj = adjacent_vertices(f[i], G2);                    while (fi_adj.first != fi_adj.second)                    {                        {                            vertex2_t v = *fi_adj.first;                            if (invariant2(v) == invariant1(j)                                && in_S[v] == false)                            {                                f[j] = v;                                in_S[v] = true;                                num_edges_on_k = 1;                                BOOST_USING_STD_MAX();                                int next_k                                    = max BOOST_PREVENT_MACRO_SUBSTITUTION(                                        dfs_num_k,                                        max BOOST_PREVENT_MACRO_SUBSTITUTION(                                            dfs_num[i], dfs_num[j]));                                match_continuation new_k;                                new_k.position                                    = match_continuation::pos_fi_adj_loop;                                new_k.fi_adj = fi_adj;                                new_k.iter = iter;                                new_k.dfs_num_k = dfs_num_k;                                ++iter;                                dfs_num_k = next_k;                                k.push_back(new_k);                                goto recur;                            }                        }                    fi_adj_loop_k:                        ++fi_adj.first;                    }                }                else                {                    if (container_contains(adjacent_vertices(f[i], G2), f[j]))                    {                        ++num_edges_on_k;                        match_continuation new_k;                        new_k.position = match_continuation::pos_dfs_num;                        k.push_back(new_k);                        ++iter;                        goto recur;                    }                }            }            else                goto return_point_true;            goto return_point_false;            {            return_point_true:                return true;            return_point_false:                if (k.empty())                    return false;                const match_continuation& this_k = k.back();                switch (this_k.position)                {                case match_continuation::pos_G2_vertex_loop:                {                    G2_verts = this_k.G2_verts;                    iter = this_k.iter;                    dfs_num_k = this_k.dfs_num_k;                    k.pop_back();                    in_S[*G2_verts.first] = false;                    i = source(*iter, G1);                    j = target(*iter, G1);                    goto G2_loop_k;                }                case match_continuation::pos_fi_adj_loop:                {                    fi_adj = this_k.fi_adj;                    iter = this_k.iter;                    dfs_num_k = this_k.dfs_num_k;                    k.pop_back();                    in_S[*fi_adj.first] = false;                    i = source(*iter, G1);                    j = target(*iter, G1);                    goto fi_adj_loop_k;                }                case match_continuation::pos_dfs_num:                {                    k.pop_back();                    goto return_point_false;                }                default:                {                    BOOST_ASSERT(!"Bad position");#ifdef UNDER_CE                    exit(-1);#else                    abort();#endif                }                }            }        }    };    template < typename Graph, typename InDegreeMap >    void compute_in_degree(const Graph& g, InDegreeMap in_degree_map)    {        BGL_FORALL_VERTICES_T(v, g, Graph)        put(in_degree_map, v, 0);        BGL_FORALL_VERTICES_T(u, g, Graph)        BGL_FORALL_ADJ_T(u, v, g, Graph)        put(in_degree_map, v, get(in_degree_map, v) + 1);    }} // namespace detailtemplate < typename InDegreeMap, typename Graph > class degree_vertex_invariant{    typedef typename graph_traits< Graph >::vertex_descriptor vertex_t;    typedef typename graph_traits< Graph >::degree_size_type size_type;public:    typedef vertex_t argument_type;    typedef size_type result_type;    degree_vertex_invariant(const InDegreeMap& in_degree_map, const Graph& g)    : m_in_degree_map(in_degree_map)    , m_max_vertex_in_degree(0)    , m_max_vertex_out_degree(0)    , m_g(g)    {        BGL_FORALL_VERTICES_T(v, g, Graph)        {            m_max_vertex_in_degree                = (std::max)(m_max_vertex_in_degree, get(m_in_degree_map, v));            m_max_vertex_out_degree                = (std::max)(m_max_vertex_out_degree, out_degree(v, g));        }    }    size_type operator()(vertex_t v) const    {        return (m_max_vertex_in_degree + 1) * out_degree(v, m_g)            + get(m_in_degree_map, v);    }    // The largest possible vertex invariant number    size_type max BOOST_PREVENT_MACRO_SUBSTITUTION() const    {        return (m_max_vertex_in_degree + 1) * (m_max_vertex_out_degree + 1);    }private:    InDegreeMap m_in_degree_map;    size_type m_max_vertex_in_degree;    size_type m_max_vertex_out_degree;    const Graph& m_g;};// Count actual number of vertices, even in filtered graphs.template < typename Graph > size_t count_vertices(const Graph& g){    size_t n = 0;    BGL_FORALL_VERTICES_T(v, g, Graph)    {        (void)v;        ++n;    }    return n;}template < typename Graph1, typename Graph2, typename IsoMapping,    typename Invariant1, typename Invariant2, typename IndexMap1,    typename IndexMap2 >bool isomorphism(const Graph1& G1, const Graph2& G2, IsoMapping f,    Invariant1 invariant1, Invariant2 invariant2, std::size_t max_invariant,    IndexMap1 index_map1, IndexMap2 index_map2){    // Graph requirements    BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph1 >));    BOOST_CONCEPT_ASSERT((EdgeListGraphConcept< Graph1 >));    BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph2 >));    // BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<Graph2> ));    typedef typename graph_traits< Graph1 >::vertex_descriptor vertex1_t;    typedef typename graph_traits< Graph2 >::vertex_descriptor vertex2_t;    typedef typename graph_traits< Graph1 >::vertices_size_type size_type;    // Vertex invariant requirement    BOOST_CONCEPT_ASSERT(        (AdaptableUnaryFunctionConcept< Invariant1, size_type, vertex1_t >));    BOOST_CONCEPT_ASSERT(        (AdaptableUnaryFunctionConcept< Invariant2, size_type, vertex2_t >));    // Property map requirements    BOOST_CONCEPT_ASSERT(        (ReadWritePropertyMapConcept< IsoMapping, vertex1_t >));    typedef typename property_traits< IsoMapping >::value_type IsoMappingValue;    BOOST_STATIC_ASSERT((is_convertible< IsoMappingValue, vertex2_t >::value));    BOOST_CONCEPT_ASSERT((ReadablePropertyMapConcept< IndexMap1, vertex1_t >));    typedef typename property_traits< IndexMap1 >::value_type IndexMap1Value;    BOOST_STATIC_ASSERT((is_convertible< IndexMap1Value, size_type >::value));    BOOST_CONCEPT_ASSERT((ReadablePropertyMapConcept< IndexMap2, vertex2_t >));    typedef typename property_traits< IndexMap2 >::value_type IndexMap2Value;    BOOST_STATIC_ASSERT((is_convertible< IndexMap2Value, size_type >::value));    if (count_vertices(G1) != count_vertices(G2))        return false;    if (count_vertices(G1) == 0 && count_vertices(G2) == 0)        return true;    detail::isomorphism_algo< Graph1, Graph2, IsoMapping, Invariant1,        Invariant2, IndexMap1, IndexMap2 >        algo(G1, G2, f, invariant1, invariant2, max_invariant, index_map1,            index_map2);    return algo.test_isomorphism();}namespace detail{    template < typename Graph1, typename Graph2, typename IsoMapping,        typename IndexMap1, typename IndexMap2, typename P, typename T,        typename R >    bool isomorphism_impl(const Graph1& G1, const Graph2& G2, IsoMapping f,        IndexMap1 index_map1, IndexMap2 index_map2,        const bgl_named_params< P, T, R >& params)    {        std::vector< std::size_t > in_degree1_vec(num_vertices(G1));        typedef safe_iterator_property_map<            std::vector< std::size_t >::iterator, IndexMap1#ifdef BOOST_NO_STD_ITERATOR_TRAITS            ,            std::size_t, std::size_t&#endif /* BOOST_NO_STD_ITERATOR_TRAITS */            >            InDeg1;        InDeg1 in_degree1(            in_degree1_vec.begin(), in_degree1_vec.size(), index_map1);        compute_in_degree(G1, in_degree1);        std::vector< std::size_t > in_degree2_vec(num_vertices(G2));        typedef safe_iterator_property_map<            std::vector< std::size_t >::iterator, IndexMap2#ifdef BOOST_NO_STD_ITERATOR_TRAITS            ,            std::size_t, std::size_t&#endif /* BOOST_NO_STD_ITERATOR_TRAITS */            >            InDeg2;        InDeg2 in_degree2(            in_degree2_vec.begin(), in_degree2_vec.size(), index_map2);        compute_in_degree(G2, in_degree2);        degree_vertex_invariant< InDeg1, Graph1 > invariant1(in_degree1, G1);        degree_vertex_invariant< InDeg2, Graph2 > invariant2(in_degree2, G2);        return isomorphism(G1, G2, f,            choose_param(get_param(params, vertex_invariant1_t()), invariant1),            choose_param(get_param(params, vertex_invariant2_t()), invariant2),            choose_param(get_param(params, vertex_max_invariant_t()),                (invariant2.max)()),            index_map1, index_map2);    }    template < typename G, typename Index > struct make_degree_invariant    {        const G& g;        const Index& index;        make_degree_invariant(const G& g, const Index& index)        : g(g), index(index)        {        }        typedef typename boost::graph_traits< G >::degree_size_type            degree_size_type;        typedef shared_array_property_map< degree_size_type, Index >            prop_map_type;        typedef degree_vertex_invariant< prop_map_type, G > result_type;        result_type operator()() const        {            prop_map_type pm = make_shared_array_property_map(                num_vertices(g), degree_size_type(), index);            compute_in_degree(g, pm);            return result_type(pm, g);        }    };} // namespace detailnamespace graph{    namespace detail    {        template < typename Graph1, typename Graph2 > struct isomorphism_impl        {            typedef bool result_type;            typedef result_type type;            template < typename ArgPack >            bool operator()(const Graph1& g1, const Graph2& g2,                const ArgPack& arg_pack) const            {                using namespace boost::graph::keywords;                typedef typename boost::detail::override_const_property_result<                    ArgPack, tag::vertex_index1_map, boost::vertex_index_t,                    Graph1 >::type index1_map_type;                typedef typename boost::detail::override_const_property_result<                    ArgPack, tag::vertex_index2_map, boost::vertex_index_t,                    Graph2 >::type index2_map_type;                index1_map_type index1_map                    = boost::detail::override_const_property(                        arg_pack, _vertex_index1_map, g1, boost::vertex_index);                index2_map_type index2_map                    = boost::detail::override_const_property(                        arg_pack, _vertex_index2_map, g2, boost::vertex_index);                typedef typename graph_traits< Graph2 >::vertex_descriptor                    vertex2_t;                typename std::vector< vertex2_t >::size_type n                    = (typename std::vector< vertex2_t >::size_type)                        num_vertices(g1);                std::vector< vertex2_t > f(n);                typename boost::parameter::lazy_binding< ArgPack,                    tag::vertex_invariant1,                    boost::detail::make_degree_invariant< Graph1,                        index1_map_type > >::type invariant1                    = arg_pack[_vertex_invariant1                        || boost::detail::make_degree_invariant< Graph1,                            index1_map_type >(g1, index1_map)];                typename boost::parameter::lazy_binding< ArgPack,                    tag::vertex_invariant2,                    boost::detail::make_degree_invariant< Graph2,                        index2_map_type > >::type invariant2                    = arg_pack[_vertex_invariant2                        || boost::detail::make_degree_invariant< Graph2,                            index2_map_type >(g2, index2_map)];                return boost::isomorphism(g1, g2,                    choose_param(                        arg_pack[_isomorphism_map | boost::param_not_found()],                        make_shared_array_property_map(                            num_vertices(g1), vertex2_t(), index1_map)),                    invariant1, invariant2,                    arg_pack[_vertex_max_invariant | (invariant2.max)()],                    index1_map, index2_map);            }        };    }    BOOST_GRAPH_MAKE_FORWARDING_FUNCTION(isomorphism, 2, 6)}// Named parameter interfaceBOOST_GRAPH_MAKE_OLD_STYLE_PARAMETER_FUNCTION(isomorphism, 2)// Verify that the given mapping iso_map from the vertices of g1 to the// vertices of g2 describes an isomorphism.// Note: this could be made much faster by specializing based on the graph// concepts modeled, but since we're verifying an O(n^(lg n)) algorithm,// O(n^4) won't hurt us.template < typename Graph1, typename Graph2, typename IsoMap >inline bool verify_isomorphism(    const Graph1& g1, const Graph2& g2, IsoMap iso_map){#if 0    // problematic for filtered_graph!    if (num_vertices(g1) != num_vertices(g2) || num_edges(g1) != num_edges(g2))      return false;#endif    BGL_FORALL_EDGES_T(e1, g1, Graph1)    {        bool found_edge = false;        BGL_FORALL_EDGES_T(e2, g2, Graph2)        {            if (source(e2, g2) == get(iso_map, source(e1, g1))                && target(e2, g2) == get(iso_map, target(e1, g1)))            {                found_edge = true;            }        }        if (!found_edge)            return false;    }    return true;}} // namespace boost#ifdef BOOST_ISO_INCLUDED_ITER_MACROS#undef BOOST_ISO_INCLUDED_ITER_MACROS#include <boost/graph/iteration_macros_undef.hpp>#endif#endif // BOOST_GRAPH_ISOMORPHISM_HPP
 |