| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357 | //  Copyright Thijs van den Berg, 2008.//  Copyright John Maddock 2008.//  Copyright Paul A. Bristow 2008, 2014.//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)// This module implements the Laplace distribution.// Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource.// http://mathworld.wolfram.com/LaplaceDistribution.html// http://en.wikipedia.org/wiki/Laplace_distribution//// Abramowitz and Stegun 1972, p 930// http://www.math.sfu.ca/~cbm/aands/page_930.htm#ifndef BOOST_STATS_LAPLACE_HPP#define BOOST_STATS_LAPLACE_HPP#include <boost/math/distributions/detail/common_error_handling.hpp>#include <boost/math/distributions/complement.hpp>#include <boost/math/constants/constants.hpp>#include <limits>namespace boost{ namespace math{#ifdef BOOST_MSVC#  pragma warning(push)#  pragma warning(disable:4127) // conditional expression is constant#endiftemplate <class RealType = double, class Policy = policies::policy<> >class laplace_distribution{public:   // ----------------------------------   // public Types   // ----------------------------------   typedef RealType value_type;   typedef Policy policy_type;   // ----------------------------------   // Constructor(s)   // ----------------------------------   laplace_distribution(RealType l_location = 0, RealType l_scale = 1)      : m_location(l_location), m_scale(l_scale)   {      RealType result;      check_parameters("boost::math::laplace_distribution<%1%>::laplace_distribution()", &result);   }   // ----------------------------------   // Public functions   // ----------------------------------   RealType location() const   {      return m_location;   }   RealType scale() const   {      return m_scale;   }   bool check_parameters(const char* function, RealType* result) const   {         if(false == detail::check_scale(function, m_scale, result, Policy())) return false;         if(false == detail::check_location(function, m_location, result, Policy())) return false;         return true;   }private:   RealType m_location;   RealType m_scale;}; // class laplace_distribution//// Convenient type synonym for double.typedef laplace_distribution<double> laplace;//// Non-member functions.template <class RealType, class Policy>inline const std::pair<RealType, RealType> range(const laplace_distribution<RealType, Policy>&){   if (std::numeric_limits<RealType>::has_infinity)  {  // Can use infinity.     return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.  }  else  { // Can only use max_value.    using boost::math::tools::max_value;    return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.  }}template <class RealType, class Policy>inline const std::pair<RealType, RealType> support(const laplace_distribution<RealType, Policy>&){  if (std::numeric_limits<RealType>::has_infinity)  { // Can Use infinity.     return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.  }  else  { // Can only use max_value.    using boost::math::tools::max_value;    return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.  }}template <class RealType, class Policy>inline RealType pdf(const laplace_distribution<RealType, Policy>& dist, const RealType& x){   BOOST_MATH_STD_USING // for ADL of std functions   // Checking function argument   RealType result = 0;   const char* function = "boost::math::pdf(const laplace_distribution<%1%>&, %1%))";   // Check scale and location.   if (false == dist.check_parameters(function, &result)) return result;   // Special pdf values.   if((boost::math::isinf)(x))   {      return 0; // pdf + and - infinity is zero.   }   if (false == detail::check_x(function, x, &result, Policy())) return result;   // General case   RealType scale( dist.scale() );   RealType location( dist.location() );   RealType exponent = x - location;   if (exponent>0) exponent = -exponent;   exponent /= scale;   result = exp(exponent);   result /= 2 * scale;   return result;} // pdftemplate <class RealType, class Policy>inline RealType cdf(const laplace_distribution<RealType, Policy>& dist, const RealType& x){   BOOST_MATH_STD_USING  // For ADL of std functions.   RealType result = 0;   // Checking function argument.   const char* function = "boost::math::cdf(const laplace_distribution<%1%>&, %1%)";   // Check scale and location.   if (false == dist.check_parameters(function, &result)) return result;   // Special cdf values:   if((boost::math::isinf)(x))   {     if(x < 0) return 0; // -infinity.     return 1; // + infinity.   }   if (false == detail::check_x(function, x, &result, Policy())) return result;   // General cdf  values   RealType scale( dist.scale() );   RealType location( dist.location() );   if (x < location)   {      result = exp( (x-location)/scale )/2;   }   else   {      result = 1 - exp( (location-x)/scale )/2;   }   return result;} // cdftemplate <class RealType, class Policy>inline RealType quantile(const laplace_distribution<RealType, Policy>& dist, const RealType& p){   BOOST_MATH_STD_USING // for ADL of std functions.   // Checking function argument   RealType result = 0;   const char* function = "boost::math::quantile(const laplace_distribution<%1%>&, %1%)";   if (false == dist.check_parameters(function, &result)) return result;   if(false == detail::check_probability(function, p, &result, Policy())) return result;   // Extreme values of p:   if(p == 0)   {      result = policies::raise_overflow_error<RealType>(function,        "probability parameter is 0, but must be > 0!", Policy());      return -result; // -std::numeric_limits<RealType>::infinity();   }     if(p == 1)   {      result = policies::raise_overflow_error<RealType>(function,        "probability parameter is 1, but must be < 1!", Policy());      return result; // std::numeric_limits<RealType>::infinity();   }   // Calculate Quantile   RealType scale( dist.scale() );   RealType location( dist.location() );   if (p - 0.5 < 0.0)      result = location + scale*log( static_cast<RealType>(p*2) );   else      result = location - scale*log( static_cast<RealType>(-p*2 + 2) );   return result;} // quantiletemplate <class RealType, class Policy>inline RealType cdf(const complemented2_type<laplace_distribution<RealType, Policy>, RealType>& c){   // Calculate complement of cdf.   BOOST_MATH_STD_USING // for ADL of std functions   RealType scale = c.dist.scale();   RealType location = c.dist.location();   RealType x = c.param;   RealType result = 0;   // Checking function argument.   const char* function = "boost::math::cdf(const complemented2_type<laplace_distribution<%1%>, %1%>&)";   // Check scale and location.   //if(false == detail::check_scale(function, scale, result, Policy())) return false;   //if(false == detail::check_location(function, location, result, Policy())) return false;    if (false == c.dist.check_parameters(function, &result)) return result;   // Special cdf values.   if((boost::math::isinf)(x))   {     if(x < 0) return 1; // cdf complement -infinity is unity.     return 0; // cdf complement +infinity is zero.   }   if(false == detail::check_x(function, x, &result, Policy()))return result;   // Cdf interval value.   if (-x < -location)   {      result = exp( (-x+location)/scale )/2;   }   else   {      result = 1 - exp( (-location+x)/scale )/2;   }   return result;} // cdf complementtemplate <class RealType, class Policy>inline RealType quantile(const complemented2_type<laplace_distribution<RealType, Policy>, RealType>& c){   BOOST_MATH_STD_USING // for ADL of std functions.   // Calculate quantile.   RealType scale = c.dist.scale();   RealType location = c.dist.location();   RealType q = c.param;   RealType result = 0;   // Checking function argument.   const char* function = "quantile(const complemented2_type<laplace_distribution<%1%>, %1%>&)";   if (false == c.dist.check_parameters(function, &result)) return result;      // Extreme values.   if(q == 0)   {       return std::numeric_limits<RealType>::infinity();   }   if(q == 1)   {       return -std::numeric_limits<RealType>::infinity();   }   if(false == detail::check_probability(function, q, &result, Policy())) return result;   if (0.5 - q < 0.0)      result = location + scale*log( static_cast<RealType>(-q*2 + 2) );   else      result = location - scale*log( static_cast<RealType>(q*2) );   return result;} // quantiletemplate <class RealType, class Policy>inline RealType mean(const laplace_distribution<RealType, Policy>& dist){   return dist.location();}template <class RealType, class Policy>inline RealType standard_deviation(const laplace_distribution<RealType, Policy>& dist){   return constants::root_two<RealType>() * dist.scale();}template <class RealType, class Policy>inline RealType mode(const laplace_distribution<RealType, Policy>& dist){   return dist.location();}template <class RealType, class Policy>inline RealType median(const laplace_distribution<RealType, Policy>& dist){   return dist.location();}template <class RealType, class Policy>inline RealType skewness(const laplace_distribution<RealType, Policy>& /*dist*/){   return 0;}template <class RealType, class Policy>inline RealType kurtosis(const laplace_distribution<RealType, Policy>& /*dist*/){   return 6;}template <class RealType, class Policy>inline RealType kurtosis_excess(const laplace_distribution<RealType, Policy>& /*dist*/){   return 3;}template <class RealType, class Policy>inline RealType entropy(const laplace_distribution<RealType, Policy> & dist){   using std::log;   return log(2*dist.scale()*constants::e<RealType>());}#ifdef BOOST_MSVC#  pragma warning(pop)#endif} // namespace math} // namespace boost// This include must be at the end, *after* the accessors// for this distribution have been defined, in order to// keep compilers that support two-phase lookup happy.#include <boost/math/distributions/detail/derived_accessors.hpp>#endif // BOOST_STATS_LAPLACE_HPP
 |