| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 | /* boost random/negative_binomial_distribution.hpp header file * * Copyright Steven Watanabe 2010 * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * See http://www.boost.org for most recent version including documentation. * * $Id$ */#ifndef BOOST_RANDOM_NEGATIVE_BINOMIAL_DISTRIBUTION_HPP_INCLUDED#define BOOST_RANDOM_NEGATIVE_BINOMIAL_DISTRIBUTION_HPP_INCLUDED#include <iosfwd>#include <boost/limits.hpp>#include <boost/random/detail/config.hpp>#include <boost/random/gamma_distribution.hpp>#include <boost/random/poisson_distribution.hpp>namespace boost {namespace random {/** * The negative binomial distribution is an integer valued * distribution with two parameters, @c k and @c p.  The * distribution produces non-negative values. * * The distribution function is * \f$\displaystyle P(i) = {k+i-1\choose i}p^k(1-p)^i\f$. * * This implementation uses a gamma-poisson mixture. */template<class IntType = int, class RealType = double>class negative_binomial_distribution {public:    typedef IntType result_type;    typedef RealType input_type;    class param_type {    public:        typedef negative_binomial_distribution distribution_type;        /**         * Construct a param_type object.  @c k and @c p         * are the parameters of the distribution.         *         * Requires: k >=0 && 0 <= p <= 1         */        explicit param_type(IntType k_arg = 1, RealType p_arg = RealType (0.5))          : _k(k_arg), _p(p_arg)        {}        /** Returns the @c k parameter of the distribution. */        IntType k() const { return _k; }        /** Returns the @c p parameter of the distribution. */        RealType p() const { return _p; }#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS        /** Writes the parameters of the distribution to a @c std::ostream. */        template<class CharT, class Traits>        friend std::basic_ostream<CharT,Traits>&        operator<<(std::basic_ostream<CharT,Traits>& os,                   const param_type& parm)        {            os << parm._p << " " << parm._k;            return os;        }            /** Reads the parameters of the distribution from a @c std::istream. */        template<class CharT, class Traits>        friend std::basic_istream<CharT,Traits>&        operator>>(std::basic_istream<CharT,Traits>& is, param_type& parm)        {            is >> parm._p >> std::ws >> parm._k;            return is;        }#endif        /** Returns true if the parameters have the same values. */        friend bool operator==(const param_type& lhs, const param_type& rhs)        {            return lhs._k == rhs._k && lhs._p == rhs._p;        }        /** Returns true if the parameters have different values. */        friend bool operator!=(const param_type& lhs, const param_type& rhs)        {            return !(lhs == rhs);        }    private:        IntType _k;        RealType _p;    };        /**     * Construct a @c negative_binomial_distribution object. @c k and @c p     * are the parameters of the distribution.     *     * Requires: k >=0 && 0 <= p <= 1     */    explicit negative_binomial_distribution(IntType k_arg = 1,                                            RealType p_arg = RealType(0.5))      : _k(k_arg), _p(p_arg)    {}        /**     * Construct an @c negative_binomial_distribution object from the     * parameters.     */    explicit negative_binomial_distribution(const param_type& parm)      : _k(parm.k()), _p(parm.p())    {}        /**     * Returns a random variate distributed according to the     * negative binomial distribution.     */    template<class URNG>    IntType operator()(URNG& urng) const    {        gamma_distribution<RealType> gamma(_k, (1-_p)/_p);        poisson_distribution<IntType, RealType> poisson(gamma(urng));        return poisson(urng);    }        /**     * Returns a random variate distributed according to the negative     * binomial distribution with parameters specified by @c param.     */    template<class URNG>    IntType operator()(URNG& urng, const param_type& parm) const    {        return negative_binomial_distribution(parm)(urng);    }    /** Returns the @c k parameter of the distribution. */    IntType k() const { return _k; }    /** Returns the @c p parameter of the distribution. */    RealType p() const { return _p; }    /** Returns the smallest value that the distribution can produce. */    IntType min BOOST_PREVENT_MACRO_SUBSTITUTION() const { return 0; }    /** Returns the largest value that the distribution can produce. */    IntType max BOOST_PREVENT_MACRO_SUBSTITUTION() const    { return (std::numeric_limits<IntType>::max)(); }    /** Returns the parameters of the distribution. */    param_type param() const { return param_type(_k, _p); }    /** Sets parameters of the distribution. */    void param(const param_type& parm)    {        _k = parm.k();        _p = parm.p();    }    /**     * Effects: Subsequent uses of the distribution do not depend     * on values produced by any engine prior to invoking reset.     */    void reset() { }#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS    /** Writes the parameters of the distribution to a @c std::ostream. */    template<class CharT, class Traits>    friend std::basic_ostream<CharT,Traits>&    operator<<(std::basic_ostream<CharT,Traits>& os,               const negative_binomial_distribution& bd)    {        os << bd.param();        return os;    }        /** Reads the parameters of the distribution from a @c std::istream. */    template<class CharT, class Traits>    friend std::basic_istream<CharT,Traits>&    operator>>(std::basic_istream<CharT,Traits>& is,               negative_binomial_distribution& bd)    {        bd.read(is);        return is;    }#endif    /** Returns true if the two distributions will produce the same        sequence of values, given equal generators. */    friend bool operator==(const negative_binomial_distribution& lhs,                           const negative_binomial_distribution& rhs)    {        return lhs._k == rhs._k && lhs._p == rhs._p;    }    /** Returns true if the two distributions could produce different        sequences of values, given equal generators. */    friend bool operator!=(const negative_binomial_distribution& lhs,                           const negative_binomial_distribution& rhs)    {        return !(lhs == rhs);    }private:    /// @cond \show_private    template<class CharT, class Traits>    void read(std::basic_istream<CharT, Traits>& is) {        param_type parm;        if(is >> parm) {            param(parm);        }    }    // parameters    IntType _k;    RealType _p;    /// @endcond};}}#endif
 |