| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496 | #ifndef BOOST_THREAD_CONDITION_VARIABLE_PTHREAD_HPP#define BOOST_THREAD_CONDITION_VARIABLE_PTHREAD_HPP// Distributed under the Boost Software License, Version 1.0. (See// accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)// (C) Copyright 2007-10 Anthony Williams// (C) Copyright 2011-2012 Vicente J. Botet Escriba#include <boost/thread/detail/platform_time.hpp>#include <boost/thread/pthread/pthread_mutex_scoped_lock.hpp>#include <boost/thread/pthread/pthread_helpers.hpp>#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS#include <boost/thread/interruption.hpp>#include <boost/thread/pthread/thread_data.hpp>#endif#include <boost/thread/pthread/condition_variable_fwd.hpp>#ifdef BOOST_THREAD_USES_CHRONO#include <boost/chrono/system_clocks.hpp>#include <boost/chrono/ceil.hpp>#endif#include <boost/thread/detail/delete.hpp>#include <algorithm>#include <boost/config/abi_prefix.hpp>namespace boost{    namespace thread_cv_detail    {        template<typename MutexType>        struct lock_on_exit        {            MutexType* m;            lock_on_exit():                m(0)            {}            void activate(MutexType& m_)            {                m_.unlock();                m=&m_;            }            void deactivate()            {                if (m)                {                    m->lock();                }                m = 0;            }            ~lock_on_exit() BOOST_NOEXCEPT_IF(false)            {                if (m)                {                    m->lock();                }           }        };    }    inline void condition_variable::wait(unique_lock<mutex>& m)    {#if defined BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED        if(! m.owns_lock())        {            boost::throw_exception(condition_error(-1, "boost::condition_variable::wait() failed precondition mutex not owned"));        }#endif        int res=0;        {#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS            thread_cv_detail::lock_on_exit<unique_lock<mutex> > guard;            detail::interruption_checker check_for_interruption(&internal_mutex,&cond);            pthread_mutex_t* the_mutex = &internal_mutex;            guard.activate(m);            res = posix::pthread_cond_wait(&cond,the_mutex);            check_for_interruption.unlock_if_locked();            guard.deactivate();#else            pthread_mutex_t* the_mutex = m.mutex()->native_handle();            res = posix::pthread_cond_wait(&cond,the_mutex);#endif        }#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS        this_thread::interruption_point();#endif        if(res)        {            boost::throw_exception(condition_error(res, "boost::condition_variable::wait failed in pthread_cond_wait"));        }    }    // When this function returns true:    // * A notification (or sometimes a spurious OS signal) has been received    // * Do not assume that the timeout has not been reached    // * Do not assume that the predicate has been changed    //    // When this function returns false:    // * The timeout has been reached    // * Do not assume that a notification has not been received    // * Do not assume that the predicate has not been changed    inline bool condition_variable::do_wait_until(                unique_lock<mutex>& m,                detail::internal_platform_timepoint const &timeout)    {#if defined BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED        if (!m.owns_lock())        {            boost::throw_exception(condition_error(EPERM, "boost::condition_variable::do_wait_until() failed precondition mutex not owned"));        }#endif        int cond_res;        {#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS            thread_cv_detail::lock_on_exit<unique_lock<mutex> > guard;            detail::interruption_checker check_for_interruption(&internal_mutex,&cond);            pthread_mutex_t* the_mutex = &internal_mutex;            guard.activate(m);            cond_res=posix::pthread_cond_timedwait(&cond,the_mutex,&timeout.getTs());            check_for_interruption.unlock_if_locked();            guard.deactivate();#else            pthread_mutex_t* the_mutex = m.mutex()->native_handle();            cond_res=posix::pthread_cond_timedwait(&cond,the_mutex,&timeout.getTs());#endif        }#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS        this_thread::interruption_point();#endif        if(cond_res==ETIMEDOUT)        {            return false;        }        if(cond_res)        {            boost::throw_exception(condition_error(cond_res, "boost::condition_variable::do_wait_until failed in pthread_cond_timedwait"));        }        return true;    }    inline void condition_variable::notify_one() BOOST_NOEXCEPT    {#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS        boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);#endif        BOOST_VERIFY(!posix::pthread_cond_signal(&cond));    }    inline void condition_variable::notify_all() BOOST_NOEXCEPT    {#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS        boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);#endif        BOOST_VERIFY(!posix::pthread_cond_broadcast(&cond));    }    class condition_variable_any    {        pthread_mutex_t internal_mutex;        pthread_cond_t cond;    public:        BOOST_THREAD_NO_COPYABLE(condition_variable_any)        condition_variable_any()        {            int const res=posix::pthread_mutex_init(&internal_mutex);            if(res)            {                boost::throw_exception(thread_resource_error(res, "boost::condition_variable_any::condition_variable_any() failed in pthread_mutex_init"));            }            int const res2 = posix::pthread_cond_init(&cond);            if(res2)            {                BOOST_VERIFY(!posix::pthread_mutex_destroy(&internal_mutex));                boost::throw_exception(thread_resource_error(res2, "boost::condition_variable_any::condition_variable_any() failed in pthread_cond_init"));            }        }        ~condition_variable_any()        {            BOOST_VERIFY(!posix::pthread_mutex_destroy(&internal_mutex));            BOOST_VERIFY(!posix::pthread_cond_destroy(&cond));        }        template<typename lock_type>        void wait(lock_type& m)        {            int res=0;            {                thread_cv_detail::lock_on_exit<lock_type> guard;#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS                detail::interruption_checker check_for_interruption(&internal_mutex,&cond);#else                boost::pthread::pthread_mutex_scoped_lock check_for_interruption(&internal_mutex);#endif                guard.activate(m);                res=posix::pthread_cond_wait(&cond,&internal_mutex);                check_for_interruption.unlock_if_locked();                guard.deactivate();            }#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS            this_thread::interruption_point();#endif            if(res)            {                boost::throw_exception(condition_error(res, "boost::condition_variable_any::wait() failed in pthread_cond_wait"));            }        }        template<typename lock_type,typename predicate_type>        void wait(lock_type& m,predicate_type pred)        {            while (!pred())            {                wait(m);            }        }#if defined BOOST_THREAD_USES_DATETIME        template<typename lock_type>        bool timed_wait(lock_type& m,boost::system_time const& abs_time)        {#if defined BOOST_THREAD_WAIT_BUG            const detail::real_platform_timepoint ts(abs_time + BOOST_THREAD_WAIT_BUG);#else            const detail::real_platform_timepoint ts(abs_time);#endif#if defined BOOST_THREAD_INTERNAL_CLOCK_IS_MONO            // The system time may jump while this function is waiting. To compensate for this and time            // out near the correct time, we could call do_wait_until() in a loop with a short timeout            // and recheck the time remaining each time through the loop. However, because we can't            // check the predicate each time do_wait_until() completes, this introduces the possibility            // of not exiting the function when a notification occurs, since do_wait_until() may report            // that it timed out even though a notification was received. The best this function can do            // is report correctly whether or not it reached the timeout time.            const detail::platform_duration d(ts - detail::real_platform_clock::now());            do_wait_until(m, detail::internal_platform_clock::now() + d);            return ts > detail::real_platform_clock::now();#else            return do_wait_until(m, ts);#endif        }        template<typename lock_type>        bool timed_wait(lock_type& m,::boost::xtime const& abs_time)        {            return timed_wait(m,system_time(abs_time));        }        template<typename lock_type,typename duration_type>        bool timed_wait(lock_type& m,duration_type const& wait_duration)        {            if (wait_duration.is_pos_infinity())            {                wait(m);                return true;            }            if (wait_duration.is_special())            {                return true;            }            detail::platform_duration d(wait_duration);#if defined(BOOST_THREAD_HAS_MONO_CLOCK) && !defined(BOOST_THREAD_INTERNAL_CLOCK_IS_MONO)            // The system time may jump while this function is waiting. To compensate for this and time            // out near the correct time, we could call do_wait_until() in a loop with a short timeout            // and recheck the time remaining each time through the loop. However, because we can't            // check the predicate each time do_wait_until() completes, this introduces the possibility            // of not exiting the function when a notification occurs, since do_wait_until() may report            // that it timed out even though a notification was received. The best this function can do            // is report correctly whether or not it reached the timeout time.            const detail::mono_platform_timepoint ts(detail::mono_platform_clock::now() + d);            do_wait_until(m, detail::internal_platform_clock::now() + d);            return ts > detail::mono_platform_clock::now();#else            return do_wait_until(m, detail::internal_platform_clock::now() + d);#endif        }        template<typename lock_type,typename predicate_type>        bool timed_wait(lock_type& m,boost::system_time const& abs_time, predicate_type pred)        {#if defined BOOST_THREAD_WAIT_BUG            const detail::real_platform_timepoint ts(abs_time + BOOST_THREAD_WAIT_BUG);#else            const detail::real_platform_timepoint ts(abs_time);#endif            while (!pred())            {#if defined BOOST_THREAD_INTERNAL_CLOCK_IS_MONO                // The system time may jump while this function is waiting. To compensate for this                // and time out near the correct time, we call do_wait_until() in a loop with a                // short timeout and recheck the time remaining each time through the loop.                detail::platform_duration d(ts - detail::real_platform_clock::now());                if (d <= detail::platform_duration::zero()) break; // timeout occurred                d = (std::min)(d, detail::platform_milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS));                do_wait_until(m, detail::internal_platform_clock::now() + d);#else                if (!do_wait_until(m, ts)) break; // timeout occurred#endif            }            return pred();        }        template<typename lock_type,typename predicate_type>        bool timed_wait(lock_type& m,::boost::xtime const& abs_time, predicate_type pred)        {            return timed_wait(m,system_time(abs_time),pred);        }        template<typename lock_type,typename duration_type,typename predicate_type>        bool timed_wait(lock_type& m,duration_type const& wait_duration,predicate_type pred)        {            if (wait_duration.is_pos_infinity())            {                while (!pred())                {                    wait(m);                }                return true;            }            if (wait_duration.is_special())            {                return pred();            }            detail::platform_duration d(wait_duration);#if defined(BOOST_THREAD_HAS_MONO_CLOCK) && !defined(BOOST_THREAD_INTERNAL_CLOCK_IS_MONO)            // The system time may jump while this function is waiting. To compensate for this            // and time out near the correct time, we call do_wait_until() in a loop with a            // short timeout and recheck the time remaining each time through the loop.            const detail::mono_platform_timepoint ts(detail::mono_platform_clock::now() + d);            while (!pred())            {                if (d <= detail::platform_duration::zero()) break; // timeout occurred                d = (std::min)(d, detail::platform_milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS));                do_wait_until(m, detail::internal_platform_clock::now() + d);                d = ts - detail::mono_platform_clock::now();            }#else            const detail::internal_platform_timepoint ts(detail::internal_platform_clock::now() + d);            while (!pred())            {                if (!do_wait_until(m, ts)) break; // timeout occurred            }#endif            return pred();        }#endif#ifdef BOOST_THREAD_USES_CHRONO        template <class lock_type,class Duration>        cv_status        wait_until(                lock_type& lock,                const chrono::time_point<detail::internal_chrono_clock, Duration>& t)        {            const boost::detail::internal_platform_timepoint ts(t);            if (do_wait_until(lock, ts)) return cv_status::no_timeout;            else return cv_status::timeout;        }        template <class lock_type, class Clock, class Duration>        cv_status        wait_until(                lock_type& lock,                const chrono::time_point<Clock, Duration>& t)        {            // The system time may jump while this function is waiting. To compensate for this and time            // out near the correct time, we could call do_wait_until() in a loop with a short timeout            // and recheck the time remaining each time through the loop. However, because we can't            // check the predicate each time do_wait_until() completes, this introduces the possibility            // of not exiting the function when a notification occurs, since do_wait_until() may report            // that it timed out even though a notification was received. The best this function can do            // is report correctly whether or not it reached the timeout time.            typedef typename common_type<Duration, typename Clock::duration>::type common_duration;            common_duration d(t - Clock::now());            do_wait_until(lock, detail::internal_chrono_clock::now() + d);            if (t > Clock::now()) return cv_status::no_timeout;            else return cv_status::timeout;        }        template <class lock_type, class Rep, class Period>        cv_status        wait_for(                lock_type& lock,                const chrono::duration<Rep, Period>& d)        {            return wait_until(lock, chrono::steady_clock::now() + d);        }        template <class lock_type, class Duration, class Predicate>        bool        wait_until(                lock_type& lock,                const chrono::time_point<detail::internal_chrono_clock, Duration>& t,                Predicate pred)        {            const detail::internal_platform_timepoint ts(t);            while (!pred())            {                if (!do_wait_until(lock, ts)) break; // timeout occurred            }            return pred();        }        template <class lock_type, class Clock, class Duration, class Predicate>        bool        wait_until(                lock_type& lock,                const chrono::time_point<Clock, Duration>& t,                Predicate pred)        {            // The system time may jump while this function is waiting. To compensate for this            // and time out near the correct time, we call do_wait_until() in a loop with a            // short timeout and recheck the time remaining each time through the loop.            typedef typename common_type<Duration, typename Clock::duration>::type common_duration;            while (!pred())            {                common_duration d(t - Clock::now());                if (d <= common_duration::zero()) break; // timeout occurred                d = (std::min)(d, common_duration(chrono::milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS)));                do_wait_until(lock, detail::internal_platform_clock::now() + detail::platform_duration(d));            }            return pred();        }        template <class lock_type, class Rep, class Period, class Predicate>        bool        wait_for(                lock_type& lock,                const chrono::duration<Rep, Period>& d,                Predicate pred)        {            return wait_until(lock, chrono::steady_clock::now() + d, boost::move(pred));        }#endif        void notify_one() BOOST_NOEXCEPT        {            boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);            BOOST_VERIFY(!posix::pthread_cond_signal(&cond));        }        void notify_all() BOOST_NOEXCEPT        {            boost::pthread::pthread_mutex_scoped_lock internal_lock(&internal_mutex);            BOOST_VERIFY(!posix::pthread_cond_broadcast(&cond));        }    private:        // When this function returns true:        // * A notification (or sometimes a spurious OS signal) has been received        // * Do not assume that the timeout has not been reached        // * Do not assume that the predicate has been changed        //        // When this function returns false:        // * The timeout has been reached        // * Do not assume that a notification has not been received        // * Do not assume that the predicate has not been changed        template <class lock_type>        bool do_wait_until(          lock_type& m,          detail::internal_platform_timepoint const &timeout)        {          int res=0;          {              thread_cv_detail::lock_on_exit<lock_type> guard;#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS              detail::interruption_checker check_for_interruption(&internal_mutex,&cond);#else              boost::pthread::pthread_mutex_scoped_lock check_for_interruption(&internal_mutex);#endif              guard.activate(m);              res=posix::pthread_cond_timedwait(&cond,&internal_mutex,&timeout.getTs());              check_for_interruption.unlock_if_locked();              guard.deactivate();          }#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS          this_thread::interruption_point();#endif          if(res==ETIMEDOUT)          {              return false;          }          if(res)          {              boost::throw_exception(condition_error(res, "boost::condition_variable_any::do_wait_until() failed in pthread_cond_timedwait"));          }          return true;        }    };}#include <boost/config/abi_suffix.hpp>#endif
 |