| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428 | ////////////////////////////////////////////////////////////////////////////////// (C) Copyright Ion Gaztanaga 2005-2015. Distributed under the Boost// Software License, Version 1.0. (See accompanying file// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)//// See http://www.boost.org/libs/container for documentation.////////////////////////////////////////////////////////////////////////////////#ifndef BOOST_CONTAINER_CONTAINER_VECTOR_HPP#define BOOST_CONTAINER_CONTAINER_VECTOR_HPP#ifndef BOOST_CONFIG_HPP#  include <boost/config.hpp>#endif#if defined(BOOST_HAS_PRAGMA_ONCE)#  pragma once#endif#include <boost/container/detail/config_begin.hpp>#include <boost/container/detail/workaround.hpp>// container#include <boost/container/container_fwd.hpp>#include <boost/container/allocator_traits.hpp>#include <boost/container/new_allocator.hpp> //new_allocator#include <boost/container/throw_exception.hpp>#include <boost/container/options.hpp>// container detail#include <boost/container/detail/advanced_insert_int.hpp>#include <boost/container/detail/algorithm.hpp> //equal()#include <boost/container/detail/alloc_helpers.hpp>#include <boost/container/detail/allocation_type.hpp>#include <boost/container/detail/copy_move_algo.hpp>#include <boost/container/detail/destroyers.hpp>#include <boost/container/detail/iterator.hpp>#include <boost/container/detail/iterators.hpp>#include <boost/move/detail/iterator_to_raw_pointer.hpp>#include <boost/container/detail/mpl.hpp>#include <boost/container/detail/next_capacity.hpp>#include <boost/container/detail/value_functors.hpp>#include <boost/move/detail/to_raw_pointer.hpp>#include <boost/container/detail/type_traits.hpp>#include <boost/container/detail/version_type.hpp>// intrusive#include <boost/intrusive/pointer_traits.hpp>// move#include <boost/move/adl_move_swap.hpp>#include <boost/move/iterator.hpp>#include <boost/move/traits.hpp>#include <boost/move/utility_core.hpp>// move/detail#if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)#include <boost/move/detail/fwd_macros.hpp>#endif#include <boost/move/detail/move_helpers.hpp>// move/algo#include <boost/move/algo/adaptive_merge.hpp>#include <boost/move/algo/unique.hpp>#include <boost/move/algo/predicate.hpp>#include <boost/move/algo/detail/set_difference.hpp>// other#include <boost/core/no_exceptions_support.hpp>#include <boost/assert.hpp>#include <boost/cstdint.hpp>//std#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)#include <initializer_list>   //for std::initializer_list#endifnamespace boost {namespace container {#ifndef BOOST_CONTAINER_DOXYGEN_INVOKEDtemplate <class Pointer, bool IsConst>class vec_iterator{   public:   typedef std::random_access_iterator_tag                                          iterator_category;   typedef typename boost::intrusive::pointer_traits<Pointer>::element_type         value_type;   typedef typename boost::intrusive::pointer_traits<Pointer>::difference_type      difference_type;   typedef typename dtl::if_c      < IsConst      , typename boost::intrusive::pointer_traits<Pointer>::template                                 rebind_pointer<const value_type>::type      , Pointer      >::type                                                                       pointer;   typedef typename boost::intrusive::pointer_traits<pointer>                       ptr_traits;   typedef typename ptr_traits::reference                                           reference;   #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED   private:   Pointer m_ptr;   class nat   {      public:      Pointer get_ptr() const      { return Pointer();  }   };   typedef typename dtl::if_c< IsConst                             , vec_iterator<Pointer, false>                             , nat>::type                                           nonconst_iterator;   public:   BOOST_CONTAINER_FORCEINLINE const Pointer &get_ptr() const BOOST_NOEXCEPT_OR_NOTHROW   {  return   m_ptr;  }   BOOST_CONTAINER_FORCEINLINE Pointer &get_ptr() BOOST_NOEXCEPT_OR_NOTHROW   {  return   m_ptr;  }   BOOST_CONTAINER_FORCEINLINE explicit vec_iterator(Pointer ptr) BOOST_NOEXCEPT_OR_NOTHROW      : m_ptr(ptr)   {}   #endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED   public:   //Constructors   BOOST_CONTAINER_FORCEINLINE vec_iterator() BOOST_NOEXCEPT_OR_NOTHROW      : m_ptr()   //Value initialization to achieve "null iterators" (N3644)   {}   BOOST_CONTAINER_FORCEINLINE vec_iterator(const vec_iterator& other) BOOST_NOEXCEPT_OR_NOTHROW      :  m_ptr(other.get_ptr())   {}   BOOST_CONTAINER_FORCEINLINE vec_iterator(const nonconst_iterator &other) BOOST_NOEXCEPT_OR_NOTHROW      :  m_ptr(other.get_ptr())   {}   BOOST_CONTAINER_FORCEINLINE vec_iterator & operator=(const vec_iterator& other) BOOST_NOEXCEPT_OR_NOTHROW   {  m_ptr = other.get_ptr();   return *this;  }   //Pointer like operators   BOOST_CONTAINER_FORCEINLINE reference operator*()   const BOOST_NOEXCEPT_OR_NOTHROW   {  BOOST_ASSERT(!!m_ptr);  return *m_ptr;  }   BOOST_CONTAINER_FORCEINLINE pointer operator->()  const BOOST_NOEXCEPT_OR_NOTHROW   {  return m_ptr;  }   BOOST_CONTAINER_FORCEINLINE reference operator[](difference_type off) const BOOST_NOEXCEPT_OR_NOTHROW   {  BOOST_ASSERT(!!m_ptr);  return m_ptr[off];  }   //Increment / Decrement   BOOST_CONTAINER_FORCEINLINE vec_iterator& operator++() BOOST_NOEXCEPT_OR_NOTHROW   {  BOOST_ASSERT(!!m_ptr); ++m_ptr;  return *this; }   BOOST_CONTAINER_FORCEINLINE vec_iterator operator++(int) BOOST_NOEXCEPT_OR_NOTHROW   {  BOOST_ASSERT(!!m_ptr); return vec_iterator(m_ptr++); }   BOOST_CONTAINER_FORCEINLINE vec_iterator& operator--() BOOST_NOEXCEPT_OR_NOTHROW   {  BOOST_ASSERT(!!m_ptr); --m_ptr; return *this;  }   BOOST_CONTAINER_FORCEINLINE vec_iterator operator--(int) BOOST_NOEXCEPT_OR_NOTHROW   {  BOOST_ASSERT(!!m_ptr); return vec_iterator(m_ptr--); }   //Arithmetic   BOOST_CONTAINER_FORCEINLINE vec_iterator& operator+=(difference_type off) BOOST_NOEXCEPT_OR_NOTHROW   {  BOOST_ASSERT(m_ptr || !off); m_ptr += off; return *this;   }   BOOST_CONTAINER_FORCEINLINE vec_iterator& operator-=(difference_type off) BOOST_NOEXCEPT_OR_NOTHROW   {  BOOST_ASSERT(m_ptr || !off); m_ptr -= off; return *this;   }   BOOST_CONTAINER_FORCEINLINE friend vec_iterator operator+(const vec_iterator &x, difference_type off) BOOST_NOEXCEPT_OR_NOTHROW   {  BOOST_ASSERT(x.m_ptr || !off); return vec_iterator(x.m_ptr+off);  }   BOOST_CONTAINER_FORCEINLINE friend vec_iterator operator+(difference_type off, vec_iterator right) BOOST_NOEXCEPT_OR_NOTHROW   {  BOOST_ASSERT(right.m_ptr || !off); right.m_ptr += off;  return right; }   BOOST_CONTAINER_FORCEINLINE friend vec_iterator operator-(vec_iterator left, difference_type off) BOOST_NOEXCEPT_OR_NOTHROW   {  BOOST_ASSERT(left.m_ptr || !off); left.m_ptr -= off;  return left; }   BOOST_CONTAINER_FORCEINLINE friend difference_type operator-(const vec_iterator &left, const vec_iterator& right) BOOST_NOEXCEPT_OR_NOTHROW   {  return left.m_ptr - right.m_ptr;   }   //Comparison operators   BOOST_CONTAINER_FORCEINLINE friend bool operator==   (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW   {  return l.m_ptr == r.m_ptr;  }   BOOST_CONTAINER_FORCEINLINE friend bool operator!=   (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW   {  return l.m_ptr != r.m_ptr;  }   BOOST_CONTAINER_FORCEINLINE friend bool operator<    (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW   {  return l.m_ptr < r.m_ptr;  }   BOOST_CONTAINER_FORCEINLINE friend bool operator<=   (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW   {  return l.m_ptr <= r.m_ptr;  }   BOOST_CONTAINER_FORCEINLINE friend bool operator>    (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW   {  return l.m_ptr > r.m_ptr;  }   BOOST_CONTAINER_FORCEINLINE friend bool operator>=   (const vec_iterator& l, const vec_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW   {  return l.m_ptr >= r.m_ptr;  }};template<class BiDirPosConstIt, class BiDirValueIt>struct vector_insert_ordered_cursor{   typedef typename iterator_traits<BiDirPosConstIt>::value_type  size_type;   typedef typename iterator_traits<BiDirValueIt>::reference      reference;   BOOST_CONTAINER_FORCEINLINE vector_insert_ordered_cursor(BiDirPosConstIt posit, BiDirValueIt valueit)      : last_position_it(posit), last_value_it(valueit)   {}   void operator --()   {      --last_value_it;      --last_position_it;      while(this->get_pos() == size_type(-1)){         --last_value_it;         --last_position_it;      }   }   BOOST_CONTAINER_FORCEINLINE size_type get_pos() const   {  return *last_position_it;  }   BOOST_CONTAINER_FORCEINLINE reference get_val()   {  return *last_value_it;  }   BiDirPosConstIt last_position_it;   BiDirValueIt last_value_it;};struct initial_capacity_t{};template<class Pointer, bool IsConst>BOOST_CONTAINER_FORCEINLINE const Pointer &vector_iterator_get_ptr(const vec_iterator<Pointer, IsConst> &it) BOOST_NOEXCEPT_OR_NOTHROW{  return   it.get_ptr();  }template<class Pointer, bool IsConst>BOOST_CONTAINER_FORCEINLINE Pointer &get_ptr(vec_iterator<Pointer, IsConst> &it) BOOST_NOEXCEPT_OR_NOTHROW{  return  it.get_ptr();  }struct vector_uninitialized_size_t {};static const vector_uninitialized_size_t vector_uninitialized_size = vector_uninitialized_size_t();template <class T>struct vector_value_traits_base{   static const bool trivial_dctr = dtl::is_trivially_destructible<T>::value;   static const bool trivial_dctr_after_move = has_trivial_destructor_after_move<T>::value;   static const bool trivial_copy = dtl::is_trivially_copy_constructible<T>::value;   static const bool nothrow_copy = dtl::is_nothrow_copy_constructible<T>::value || trivial_copy;   static const bool trivial_assign = dtl::is_trivially_copy_assignable<T>::value;   static const bool nothrow_assign = dtl::is_nothrow_copy_assignable<T>::value || trivial_assign;};template <class Allocator>struct vector_value_traits   : public vector_value_traits_base<typename Allocator::value_type>{   typedef vector_value_traits_base<typename Allocator::value_type> base_t;   //This is the anti-exception array destructor   //to deallocate values already constructed   typedef typename dtl::if_c      <base_t::trivial_dctr      ,dtl::null_scoped_destructor_n<Allocator>      ,dtl::scoped_destructor_n<Allocator>      >::type   ArrayDestructor;   //This is the anti-exception array deallocator   typedef dtl::scoped_array_deallocator<Allocator> ArrayDeallocator;};//!This struct deallocates and allocated memorytemplate < class Allocator         , class StoredSizeType         , class AllocatorVersion = typename dtl::version<Allocator>::type         >struct vector_alloc_holder   : public Allocator{   private:   BOOST_MOVABLE_BUT_NOT_COPYABLE(vector_alloc_holder)   public:   typedef Allocator                                           allocator_type;   typedef StoredSizeType                                      stored_size_type;   typedef boost::container::allocator_traits<allocator_type>  allocator_traits_type;   typedef typename allocator_traits_type::pointer             pointer;   typedef typename allocator_traits_type::size_type           size_type;   typedef typename allocator_traits_type::value_type          value_type;   static bool is_propagable_from(const allocator_type &from_alloc, pointer p, const allocator_type &to_alloc, bool const propagate_allocator)   {      (void)propagate_allocator; (void)p; (void)to_alloc; (void)from_alloc;      const bool all_storage_propagable = !allocator_traits_type::is_partially_propagable::value ||                                          !allocator_traits_type::storage_is_unpropagable(from_alloc, p);      return all_storage_propagable && (propagate_allocator || allocator_traits_type::equal(from_alloc, to_alloc));   }   static bool are_swap_propagable(const allocator_type &l_a, pointer l_p, const allocator_type &r_a, pointer r_p, bool const propagate_allocator)   {      (void)propagate_allocator; (void)l_p; (void)r_p; (void)l_a; (void)r_a;      const bool all_storage_propagable = !allocator_traits_type::is_partially_propagable::value ||               !(allocator_traits_type::storage_is_unpropagable(l_a, l_p) || allocator_traits_type::storage_is_unpropagable(r_a, r_p));      return all_storage_propagable && (propagate_allocator || allocator_traits_type::equal(l_a, r_a));   }   //Constructor, does not throw   vector_alloc_holder()      BOOST_NOEXCEPT_IF(dtl::is_nothrow_default_constructible<allocator_type>::value)      : allocator_type(), m_start(), m_size(), m_capacity()   {}   //Constructor, does not throw   template<class AllocConvertible>   explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a) BOOST_NOEXCEPT_OR_NOTHROW      : allocator_type(boost::forward<AllocConvertible>(a)), m_start(), m_size(), m_capacity()   {}   //Constructor, does not throw   template<class AllocConvertible>   vector_alloc_holder(vector_uninitialized_size_t, BOOST_FWD_REF(AllocConvertible) a, size_type initial_size)      : allocator_type(boost::forward<AllocConvertible>(a))      , m_start()      //Size is initialized here so vector should only call uninitialized_xxx after this      , m_size(static_cast<stored_size_type>(initial_size))      , m_capacity()   {      if(initial_size){         pointer reuse = pointer();         size_type final_cap = initial_size;         m_start = this->allocation_command(allocate_new, initial_size, final_cap, reuse);         m_capacity = static_cast<stored_size_type>(final_cap);      }   }   //Constructor, does not throw   vector_alloc_holder(vector_uninitialized_size_t, size_type initial_size)      : allocator_type()      , m_start()      //Size is initialized here so vector should only call uninitialized_xxx after this      , m_size(static_cast<stored_size_type>(initial_size))      , m_capacity()   {      if(initial_size){         pointer reuse = pointer();         size_type final_cap = initial_size;         m_start = this->allocation_command(allocate_new, initial_size, final_cap, reuse);         m_capacity = static_cast<stored_size_type>(final_cap);      }   }   vector_alloc_holder(BOOST_RV_REF(vector_alloc_holder) holder) BOOST_NOEXCEPT_OR_NOTHROW      : allocator_type(BOOST_MOVE_BASE(allocator_type, holder))      , m_start(holder.m_start)      , m_size(holder.m_size)      , m_capacity(holder.m_capacity)   {      holder.m_start = pointer();      holder.m_size = holder.m_capacity = 0;   }   vector_alloc_holder(initial_capacity_t, pointer p, size_type capacity, BOOST_RV_REF(vector_alloc_holder) holder)      : allocator_type(BOOST_MOVE_BASE(allocator_type, holder))      , m_start(p)      , m_size(holder.m_size)      , m_capacity(static_cast<stored_size_type>(capacity))   {      allocator_type &this_alloc = this->alloc();      allocator_type &x_alloc = holder.alloc();      if(this->is_propagable_from(x_alloc, holder.start(), this_alloc, true)){         if(this->m_capacity){            this->deallocate(this->m_start, this->m_capacity);         }         m_start = holder.m_start;         m_capacity = holder.m_capacity;         holder.m_start = pointer();         holder.m_capacity = holder.m_size = 0;      }      else if(this->m_capacity < holder.m_size){         size_type const n = holder.m_size;         pointer reuse = pointer();         size_type final_cap = n;         m_start = this->allocation_command(allocate_new, n, final_cap, reuse);         m_capacity = static_cast<stored_size_type>(final_cap);         #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS         this->num_alloc += n != 0;         #endif      }   }   vector_alloc_holder(initial_capacity_t, pointer p, size_type n)      BOOST_NOEXCEPT_IF(dtl::is_nothrow_default_constructible<allocator_type>::value)      : allocator_type()      , m_start(p)      , m_size()      //n is guaranteed to fit into stored_size_type      , m_capacity(static_cast<stored_size_type>(n))   {}   template<class AllocFwd>   vector_alloc_holder(initial_capacity_t, pointer p, size_type n, BOOST_FWD_REF(AllocFwd) a)      : allocator_type(::boost::forward<AllocFwd>(a))      , m_start(p)      , m_size()      , m_capacity(n)   {}   BOOST_CONTAINER_FORCEINLINE ~vector_alloc_holder() BOOST_NOEXCEPT_OR_NOTHROW   {      if(this->m_capacity){         this->deallocate(this->m_start, this->m_capacity);      }   }   BOOST_CONTAINER_FORCEINLINE pointer allocation_command(boost::container::allocation_type command,                              size_type limit_size, size_type &prefer_in_recvd_out_size, pointer &reuse)   {      typedef typename dtl::version<allocator_type>::type alloc_version;      return this->priv_allocation_command(alloc_version(), command, limit_size, prefer_in_recvd_out_size, reuse);   }   BOOST_CONTAINER_FORCEINLINE pointer allocate(size_type n)   {      const size_type max_alloc = allocator_traits_type::max_size(this->alloc());      const size_type max = max_alloc <= stored_size_type(-1) ? max_alloc : stored_size_type(-1);      if ( max < n )         boost::container::throw_length_error("get_next_capacity, allocator's max size reached");      return allocator_traits_type::allocate(this->alloc(), n);   }   BOOST_CONTAINER_FORCEINLINE void deallocate(const pointer &p, size_type n)   {      allocator_traits_type::deallocate(this->alloc(), p, n);   }   bool try_expand_fwd(size_type at_least)   {      //There is not enough memory, try to expand the old one      const size_type new_cap = this->capacity() + at_least;      size_type real_cap = new_cap;      pointer reuse = this->start();      bool const success = !!this->allocation_command(expand_fwd, new_cap, real_cap, reuse);      //Check for forward expansion      if(success){         #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS         ++this->num_expand_fwd;         #endif         this->capacity(real_cap);      }      return success;   }   template<class GrowthFactorType>   size_type next_capacity(size_type additional_objects) const   {      BOOST_ASSERT(additional_objects > size_type(this->m_capacity - this->m_size));      size_type max = allocator_traits_type::max_size(this->alloc());      (clamp_by_stored_size_type)(max, stored_size_type());      const size_type remaining_cap = max - size_type(this->m_capacity);      const size_type min_additional_cap = additional_objects - size_type(this->m_capacity - this->m_size);      if ( remaining_cap < min_additional_cap )         boost::container::throw_length_error("get_next_capacity, allocator's max size reached");      return GrowthFactorType()( size_type(this->m_capacity), min_additional_cap, max);   }   pointer           m_start;   stored_size_type  m_size;   stored_size_type  m_capacity;   void swap_resources(vector_alloc_holder &x) BOOST_NOEXCEPT_OR_NOTHROW   {      boost::adl_move_swap(this->m_start, x.m_start);      boost::adl_move_swap(this->m_size, x.m_size);      boost::adl_move_swap(this->m_capacity, x.m_capacity);   }   void steal_resources(vector_alloc_holder &x) BOOST_NOEXCEPT_OR_NOTHROW   {      this->m_start     = x.m_start;      this->m_size      = x.m_size;      this->m_capacity  = x.m_capacity;      x.m_start = pointer();      x.m_size = x.m_capacity = 0;   }   BOOST_CONTAINER_FORCEINLINE allocator_type &alloc() BOOST_NOEXCEPT_OR_NOTHROW   {  return *this;  }   BOOST_CONTAINER_FORCEINLINE const allocator_type &alloc() const BOOST_NOEXCEPT_OR_NOTHROW   {  return *this;  }   BOOST_CONTAINER_FORCEINLINE const pointer   &start() const     BOOST_NOEXCEPT_OR_NOTHROW      {  return m_start;  }   BOOST_CONTAINER_FORCEINLINE       size_type capacity() const     BOOST_NOEXCEPT_OR_NOTHROW      {  return m_capacity;  }   BOOST_CONTAINER_FORCEINLINE void start(const pointer &p)       BOOST_NOEXCEPT_OR_NOTHROW      {  m_start = p;  }   BOOST_CONTAINER_FORCEINLINE void capacity(const size_type &c)  BOOST_NOEXCEPT_OR_NOTHROW      {  BOOST_ASSERT( c <= stored_size_type(-1)); m_capacity = c;  }   static BOOST_CONTAINER_FORCEINLINE void on_capacity_overflow()   { }   private:   void priv_first_allocation(size_type cap)   {      if(cap){         pointer reuse = pointer();         m_start = this->allocation_command(allocate_new, cap, cap, reuse);         m_capacity = cap;         #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS         ++this->num_alloc;         #endif      }   }   BOOST_CONTAINER_FORCEINLINE static void clamp_by_stored_size_type(size_type &, size_type)   {}   template<class SomeStoredSizeType>   BOOST_CONTAINER_FORCEINLINE static void clamp_by_stored_size_type(size_type &s, SomeStoredSizeType)   {      if (s >= SomeStoredSizeType(-1) )          s = SomeStoredSizeType(-1);   }   BOOST_CONTAINER_FORCEINLINE pointer priv_allocation_command(version_1, boost::container::allocation_type command,                         size_type limit_size,                         size_type &prefer_in_recvd_out_size,                         pointer &reuse)   {      (void)command;      BOOST_ASSERT( (command & allocate_new));      BOOST_ASSERT(!(command & nothrow_allocation));      //First detect overflow on smaller stored_size_types      if (limit_size > stored_size_type(-1)){         boost::container::throw_length_error("get_next_capacity, allocator's max size reached");      }      (clamp_by_stored_size_type)(prefer_in_recvd_out_size, stored_size_type());      pointer const p = this->allocate(prefer_in_recvd_out_size);      reuse = pointer();      return p;   }   pointer priv_allocation_command(version_2, boost::container::allocation_type command,                         size_type limit_size,                         size_type &prefer_in_recvd_out_size,                         pointer &reuse)   {      //First detect overflow on smaller stored_size_types      if (limit_size > stored_size_type(-1)){         boost::container::throw_length_error("get_next_capacity, allocator's max size reached");      }      (clamp_by_stored_size_type)(prefer_in_recvd_out_size, stored_size_type());      //Allocate memory       pointer p = this->alloc().allocation_command(command, limit_size, prefer_in_recvd_out_size, reuse);      //If after allocation prefer_in_recvd_out_size is not representable by stored_size_type, truncate it.      (clamp_by_stored_size_type)(prefer_in_recvd_out_size, stored_size_type());      return p;   }};//!This struct deallocates and allocated memorytemplate <class Allocator, class StoredSizeType>struct vector_alloc_holder<Allocator, StoredSizeType, version_0>   : public Allocator{   private:   BOOST_MOVABLE_BUT_NOT_COPYABLE(vector_alloc_holder)   public:   typedef Allocator                                     allocator_type;   typedef boost::container::      allocator_traits<allocator_type>                   allocator_traits_type;   typedef typename allocator_traits_type::pointer       pointer;   typedef typename allocator_traits_type::size_type     size_type;   typedef typename allocator_traits_type::value_type    value_type;   typedef StoredSizeType                                stored_size_type;         template <class OtherAllocator, class OtherStoredSizeType, class OtherAllocatorVersion>   friend struct vector_alloc_holder;   //Constructor, does not throw   vector_alloc_holder()      BOOST_NOEXCEPT_IF(dtl::is_nothrow_default_constructible<allocator_type>::value)      : allocator_type(), m_size()   {}   //Constructor, does not throw   template<class AllocConvertible>   explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a) BOOST_NOEXCEPT_OR_NOTHROW      : allocator_type(boost::forward<AllocConvertible>(a)), m_size()   {}   //Constructor, does not throw   template<class AllocConvertible>   vector_alloc_holder(vector_uninitialized_size_t, BOOST_FWD_REF(AllocConvertible) a, size_type initial_size)      : allocator_type(boost::forward<AllocConvertible>(a))      , m_size(initial_size)  //Size is initialized here...   {      //... and capacity here, so vector, must call uninitialized_xxx in the derived constructor      this->priv_first_allocation(initial_size);   }   //Constructor, does not throw   vector_alloc_holder(vector_uninitialized_size_t, size_type initial_size)      : allocator_type()      , m_size(initial_size)  //Size is initialized here...   {      //... and capacity here, so vector, must call uninitialized_xxx in the derived constructor      this->priv_first_allocation(initial_size);   }   vector_alloc_holder(BOOST_RV_REF(vector_alloc_holder) holder)      : allocator_type(BOOST_MOVE_BASE(allocator_type, holder))      , m_size(holder.m_size) //Size is initialized here so vector should only call uninitialized_xxx after this   {      ::boost::container::uninitialized_move_alloc_n         (this->alloc(), boost::movelib::to_raw_pointer(holder.start()), m_size, boost::movelib::to_raw_pointer(this->start()));   }   template<class OtherAllocator, class OtherStoredSizeType, class OtherAllocatorVersion>   vector_alloc_holder(BOOST_RV_REF_BEG vector_alloc_holder<OtherAllocator, OtherStoredSizeType, OtherAllocatorVersion> BOOST_RV_REF_END holder)      : allocator_type()      , m_size(holder.m_size) //Initialize it to m_size as first_allocation can only succeed or abort   {      //Different allocator type so we must check we have enough storage      const size_type n = holder.m_size;      this->priv_first_allocation(n);      ::boost::container::uninitialized_move_alloc_n         (this->alloc(), boost::movelib::to_raw_pointer(holder.start()), n, boost::movelib::to_raw_pointer(this->start()));   }   static BOOST_CONTAINER_FORCEINLINE void on_capacity_overflow()   {  allocator_type::on_capacity_overflow();  }   BOOST_CONTAINER_FORCEINLINE void priv_first_allocation(size_type cap)   {      if(cap > allocator_type::internal_capacity){         on_capacity_overflow();      }   }   BOOST_CONTAINER_FORCEINLINE void deep_swap(vector_alloc_holder &x)   {      this->priv_deep_swap(x);   }   template<class OtherAllocator, class OtherStoredSizeType, class OtherAllocatorVersion>   void deep_swap(vector_alloc_holder<OtherAllocator, OtherStoredSizeType, OtherAllocatorVersion> &x)   {      typedef typename real_allocator<value_type, OtherAllocator>::type other_allocator_type;      if(this->m_size > other_allocator_type::internal_capacity || x.m_size > allocator_type::internal_capacity){         on_capacity_overflow();      }      this->priv_deep_swap(x);   }   BOOST_CONTAINER_FORCEINLINE void swap_resources(vector_alloc_holder &) BOOST_NOEXCEPT_OR_NOTHROW   {  //Containers with version 0 allocators can't be moved without moving elements one by one      on_capacity_overflow();   }   BOOST_CONTAINER_FORCEINLINE void steal_resources(vector_alloc_holder &)   {  //Containers with version 0 allocators can't be moved without moving elements one by one      on_capacity_overflow();   }   BOOST_CONTAINER_FORCEINLINE allocator_type &alloc() BOOST_NOEXCEPT_OR_NOTHROW   {  return *this;  }   BOOST_CONTAINER_FORCEINLINE const allocator_type &alloc() const BOOST_NOEXCEPT_OR_NOTHROW   {  return *this;  }   BOOST_CONTAINER_FORCEINLINE bool try_expand_fwd(size_type at_least)   {  return !at_least;  }   BOOST_CONTAINER_FORCEINLINE pointer start() const       BOOST_NOEXCEPT_OR_NOTHROW   {  return allocator_type::internal_storage();  }      BOOST_CONTAINER_FORCEINLINE size_type  capacity() const BOOST_NOEXCEPT_OR_NOTHROW   {  return allocator_type::internal_capacity;  }      stored_size_type m_size;   private:   template<class OtherAllocator, class OtherStoredSizeType, class OtherAllocatorVersion>   void priv_deep_swap(vector_alloc_holder<OtherAllocator, OtherStoredSizeType, OtherAllocatorVersion> &x)   {      const size_type MaxTmpStorage = sizeof(value_type)*allocator_type::internal_capacity;      value_type *const first_this = boost::movelib::to_raw_pointer(this->start());      value_type *const first_x = boost::movelib::to_raw_pointer(x.start());      if(this->m_size < x.m_size){         boost::container::deep_swap_alloc_n<MaxTmpStorage>(this->alloc(), first_this, this->m_size, first_x, x.m_size);      }      else{         boost::container::deep_swap_alloc_n<MaxTmpStorage>(this->alloc(), first_x, x.m_size, first_this, this->m_size);      }      boost::adl_move_swap(this->m_size, x.m_size);   }};struct growth_factor_60;template<class Options, class AllocatorSizeType>struct get_vector_opt{   typedef vector_opt< typename default_if_void<typename Options::growth_factor_type, growth_factor_60>::type                     , typename default_if_void<typename Options::stored_size_type, AllocatorSizeType>::type                     > type;};template<class AllocatorSizeType>struct get_vector_opt<void, AllocatorSizeType>{   typedef vector_opt<growth_factor_60, AllocatorSizeType> type;};#endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED//! A vector is a sequence that supports random access to elements, constant//! time insertion and removal of elements at the end, and linear time insertion//! and removal of elements at the beginning or in the middle. The number of//! elements in a vector may vary dynamically; memory management is automatic.//!//! \tparam T The type of object that is stored in the vector//! \tparam A The allocator used for all internal memory management, use void//!   for the default allocator//! \tparam Options A type produced from \c boost::container::vector_options.template <class T, class A BOOST_CONTAINER_DOCONLY(= void), class Options BOOST_CONTAINER_DOCONLY(= void) >class vector{public:   //////////////////////////////////////////////   //   //                    types   //   //////////////////////////////////////////////   typedef T                                                               value_type;   typedef BOOST_CONTAINER_IMPDEF      (typename real_allocator<T BOOST_MOVE_I A>::type)            allocator_type;   typedef ::boost::container::allocator_traits<allocator_type>            allocator_traits_t;   typedef typename   allocator_traits<allocator_type>::pointer            pointer;   typedef typename   allocator_traits<allocator_type>::const_pointer      const_pointer;   typedef typename   allocator_traits<allocator_type>::reference          reference;   typedef typename   allocator_traits<allocator_type>::const_reference    const_reference;   typedef typename   allocator_traits<allocator_type>::size_type          size_type;   typedef typename   allocator_traits<allocator_type>::difference_type    difference_type;   typedef allocator_type                                                  stored_allocator_type;   typedef BOOST_CONTAINER_IMPDEF(vec_iterator<pointer BOOST_MOVE_I false>)       iterator;   typedef BOOST_CONTAINER_IMPDEF(vec_iterator<pointer BOOST_MOVE_I true >)       const_iterator;   typedef BOOST_CONTAINER_IMPDEF(boost::container::reverse_iterator<iterator>)        reverse_iterator;   typedef BOOST_CONTAINER_IMPDEF(boost::container::reverse_iterator<const_iterator>)  const_reverse_iterator;private:   #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED   typedef typename boost::container::      allocator_traits<allocator_type>::size_type                             alloc_size_type;   typedef typename get_vector_opt<Options, alloc_size_type>::type            options_type;   typedef typename options_type::growth_factor_type                          growth_factor_type;   typedef typename options_type::stored_size_type                            stored_size_type;   typedef value_less<T>                                                      value_less_t;   //If provided the stored_size option must specify a type that is equal or a type that is smaller.   BOOST_STATIC_ASSERT( (sizeof(stored_size_type) < sizeof(alloc_size_type) ||                        dtl::is_same<stored_size_type, alloc_size_type>::value) );   typedef typename dtl::version<allocator_type>::type alloc_version;   typedef boost::container::vector_alloc_holder      <allocator_type, stored_size_type> alloc_holder_t;   alloc_holder_t m_holder;   typedef allocator_traits<allocator_type>                      allocator_traits_type;   template <class U, class UA, class UOptions>   friend class vector;   protected:   BOOST_CONTAINER_FORCEINLINE      static bool is_propagable_from(const allocator_type &from_alloc, pointer p, const allocator_type &to_alloc, bool const propagate_allocator)   {  return alloc_holder_t::is_propagable_from(from_alloc, p, to_alloc, propagate_allocator);  }   BOOST_CONTAINER_FORCEINLINE      static bool are_swap_propagable( const allocator_type &l_a, pointer l_p                                     , const allocator_type &r_a, pointer r_p, bool const propagate_allocator)   {  return alloc_holder_t::are_swap_propagable(l_a, l_p, r_a, r_p, propagate_allocator);  }   #endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED   #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED   private:   BOOST_COPYABLE_AND_MOVABLE(vector)   typedef vector_value_traits<allocator_type> value_traits;   typedef constant_iterator<T, difference_type>            cvalue_iterator;   protected:   BOOST_CONTAINER_FORCEINLINE void steal_resources(vector &x)   {  return this->m_holder.steal_resources(x.m_holder);   }   template<class AllocFwd>   BOOST_CONTAINER_FORCEINLINE vector(initial_capacity_t, pointer initial_memory, size_type capacity, BOOST_FWD_REF(AllocFwd) a)      : m_holder(initial_capacity_t(), initial_memory, capacity, ::boost::forward<AllocFwd>(a))   {}   BOOST_CONTAINER_FORCEINLINE vector(initial_capacity_t, pointer initial_memory, size_type capacity)      : m_holder(initial_capacity_t(), initial_memory, capacity)   {}   #endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED   public:   //////////////////////////////////////////////   //   //          construct/copy/destroy   //   //////////////////////////////////////////////   //! <b>Effects</b>: Constructs a vector taking the allocator as parameter.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   vector() BOOST_NOEXCEPT_IF(dtl::is_nothrow_default_constructible<allocator_type>::value)      : m_holder()   {}   //! <b>Effects</b>: Constructs a vector taking the allocator as parameter.   //!   //! <b>Throws</b>: Nothing   //!   //! <b>Complexity</b>: Constant.   explicit vector(const allocator_type& a) BOOST_NOEXCEPT_OR_NOTHROW      : m_holder(a)   {}   //! <b>Effects</b>: Constructs a vector and inserts n value initialized values.   //!   //! <b>Throws</b>: If allocator_type's allocation   //!   throws or T's value initialization throws.   //!   //! <b>Complexity</b>: Linear to n.   explicit vector(size_type n)      :  m_holder(vector_uninitialized_size, n)   {      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS      this->num_alloc += n != 0;      #endif      boost::container::uninitialized_value_init_alloc_n         (this->m_holder.alloc(), n, this->priv_raw_begin());   }   //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a   //!   and inserts n value initialized values.   //!   //! <b>Throws</b>: If allocator_type's allocation   //!   throws or T's value initialization throws.   //!   //! <b>Complexity</b>: Linear to n.   explicit vector(size_type n, const allocator_type &a)      :  m_holder(vector_uninitialized_size, a, n)   {      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS      this->num_alloc += n != 0;      #endif      boost::container::uninitialized_value_init_alloc_n         (this->m_holder.alloc(), n, this->priv_raw_begin());   }   //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a   //!   and inserts n default initialized values.   //!   //! <b>Throws</b>: If allocator_type's allocation   //!   throws or T's default initialization throws.   //!   //! <b>Complexity</b>: Linear to n.   //!   //! <b>Note</b>: Non-standard extension   vector(size_type n, default_init_t)      :  m_holder(vector_uninitialized_size, n)   {      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS      this->num_alloc += n != 0;      #endif      boost::container::uninitialized_default_init_alloc_n         (this->m_holder.alloc(), n, this->priv_raw_begin());   }   //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a   //!   and inserts n default initialized values.   //!   //! <b>Throws</b>: If allocator_type's allocation   //!   throws or T's default initialization throws.   //!   //! <b>Complexity</b>: Linear to n.   //!   //! <b>Note</b>: Non-standard extension   vector(size_type n, default_init_t, const allocator_type &a)      :  m_holder(vector_uninitialized_size, a, n)   {      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS      this->num_alloc += n != 0;      #endif      boost::container::uninitialized_default_init_alloc_n         (this->m_holder.alloc(), n, this->priv_raw_begin());   }   //! <b>Effects</b>: Constructs a vector   //!   and inserts n copies of value.   //!   //! <b>Throws</b>: If allocator_type's allocation   //!   throws or T's copy constructor throws.   //!   //! <b>Complexity</b>: Linear to n.   vector(size_type n, const T& value)      :  m_holder(vector_uninitialized_size, n)   {      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS      this->num_alloc += n != 0;      #endif      boost::container::uninitialized_fill_alloc_n         (this->m_holder.alloc(), value, n, this->priv_raw_begin());   }   //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a   //!   and inserts n copies of value.   //!   //! <b>Throws</b>: If allocation   //!   throws or T's copy constructor throws.   //!   //! <b>Complexity</b>: Linear to n.   vector(size_type n, const T& value, const allocator_type& a)      :  m_holder(vector_uninitialized_size, a, n)   {      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS      this->num_alloc += n != 0;      #endif      boost::container::uninitialized_fill_alloc_n         (this->m_holder.alloc(), value, n, this->priv_raw_begin());   }   //! <b>Effects</b>: Constructs a vector   //!   and inserts a copy of the range [first, last) in the vector.   //!   //! <b>Throws</b>: If allocator_type's allocation   //!   throws or T's constructor taking a dereferenced InIt throws.   //!   //! <b>Complexity</b>: Linear to the range [first, last).//    template <class InIt>//    vector(InIt first, InIt last//           BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_c//                                  < dtl::is_convertible<InIt BOOST_MOVE_I size_type>::value//                                  BOOST_MOVE_I dtl::nat >::type * = 0)//           ) -> vector<typename iterator_traits<InIt>::value_type, new_allocator<typename iterator_traits<InIt>::value_type>>;   template <class InIt>   vector(InIt first, InIt last      BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_c         < dtl::is_convertible<InIt BOOST_MOVE_I size_type>::value         BOOST_MOVE_I dtl::nat >::type * = 0)      )      :  m_holder()   {  this->assign(first, last); }   //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a   //!   and inserts a copy of the range [first, last) in the vector.   //!   //! <b>Throws</b>: If allocator_type's allocation   //!   throws or T's constructor taking a dereferenced InIt throws.   //!   //! <b>Complexity</b>: Linear to the range [first, last).//    template <class InIt>//    vector(InIt first, InIt last, const allocator_type& a//           BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_c//                                  < dtl::is_convertible<InIt BOOST_MOVE_I size_type>::value//                                  BOOST_MOVE_I dtl::nat >::type * = 0)//           ) -> vector<typename iterator_traits<InIt>::value_type, new_allocator<typename iterator_traits<InIt>::value_type>>;   template <class InIt>   vector(InIt first, InIt last, const allocator_type& a      BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_c         < dtl::is_convertible<InIt BOOST_MOVE_I size_type>::value         BOOST_MOVE_I dtl::nat >::type * = 0)      )      :  m_holder(a)   {  this->assign(first, last); }   //! <b>Effects</b>: Copy constructs a vector.   //!   //! <b>Postcondition</b>: x == *this.   //!   //! <b>Throws</b>: If allocator_type's allocation   //!   throws or T's copy constructor throws.   //!   //! <b>Complexity</b>: Linear to the elements x contains.   vector(const vector &x)      :  m_holder( vector_uninitialized_size                 , allocator_traits_type::select_on_container_copy_construction(x.m_holder.alloc())                 , x.size())   {      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS      this->num_alloc += x.size() != 0;      #endif      ::boost::container::uninitialized_copy_alloc_n         ( this->m_holder.alloc(), x.priv_raw_begin()         , x.size(), this->priv_raw_begin());   }   //! <b>Effects</b>: Move constructor. Moves x's resources to *this.   //!   //! <b>Throws</b>: Nothing   //!   //! <b>Complexity</b>: Constant.   vector(BOOST_RV_REF(vector) x) BOOST_NOEXCEPT_OR_NOTHROW      :  m_holder(boost::move(x.m_holder))   {  BOOST_STATIC_ASSERT((!allocator_traits_type::is_partially_propagable::value));  }   #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)   //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a   //!  and inserts a copy of the range [il.begin(), il.last()) in the vector   //!   //! <b>Throws</b>: If T's constructor taking a dereferenced initializer_list iterator throws.   //!   //! <b>Complexity</b>: Linear to the range [il.begin(), il.end()).   vector(std::initializer_list<value_type> il, const allocator_type& a = allocator_type())      : m_holder(a)   {      this->assign(il.begin(), il.end());   }   #endif   #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)   //! <b>Effects</b>: Move constructor. Moves x's resources to *this.   //!   //! <b>Throws</b>: If T's move constructor or allocation throws   //!   //! <b>Complexity</b>: Linear.   //!   //! <b>Note</b>: Non-standard extension to support static_vector   template<class OtherA>   vector(BOOST_RV_REF_BEG vector<T, OtherA, Options> BOOST_RV_REF_END x         , typename dtl::enable_if_c            < dtl::is_version<typename real_allocator<T, OtherA>::type, 0>::value>::type * = 0         )      :  m_holder(boost::move(x.m_holder))   {}   #endif   //!defined(BOOST_CONTAINER_DOXYGEN_INVOKED)   //! <b>Effects</b>: Copy constructs a vector using the specified allocator.   //!   //! <b>Postcondition</b>: x == *this.   //!   //! <b>Throws</b>: If allocation   //!   throws or T's copy constructor throws.   //!   //! <b>Complexity</b>: Linear to the elements x contains.   vector(const vector &x, const allocator_type &a)      :  m_holder(vector_uninitialized_size, a, x.size())   {      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS      this->num_alloc += x.size() != 0;      #endif      ::boost::container::uninitialized_copy_alloc_n_source         ( this->m_holder.alloc(), x.priv_raw_begin()         , x.size(), this->priv_raw_begin());   }   //! <b>Effects</b>: Move constructor using the specified allocator.   //!                 Moves x's resources to *this if a == allocator_type().   //!                 Otherwise copies values from x to *this.   //!   //! <b>Throws</b>: If allocation or T's copy constructor throws.   //!   //! <b>Complexity</b>: Constant if a == x.get_allocator(), linear otherwise.   vector(BOOST_RV_REF(vector) x, const allocator_type &a)      :  m_holder( vector_uninitialized_size, a                 , is_propagable_from(x.get_stored_allocator(), x.m_holder.start(), a, true) ? 0 : x.size()                 )   {      if(is_propagable_from(x.get_stored_allocator(), x.m_holder.start(), a, true)){         this->m_holder.steal_resources(x.m_holder);      }      else{         const size_type n = x.size();         #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS         this->num_alloc += n != 0;         #endif         ::boost::container::uninitialized_move_alloc_n_source            ( this->m_holder.alloc(), x.priv_raw_begin()            , n, this->priv_raw_begin());      }   }   //! <b>Effects</b>: Destroys the vector. All stored values are destroyed   //!   and used memory is deallocated.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the number of elements.   ~vector() BOOST_NOEXCEPT_OR_NOTHROW   {      boost::container::destroy_alloc_n         (this->get_stored_allocator(), this->priv_raw_begin(), this->m_holder.m_size);      //vector_alloc_holder deallocates the data   }   //! <b>Effects</b>: Makes *this contain the same elements as x.   //!   //! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy   //! of each of x's elements.   //!   //! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment throws.   //!   //! <b>Complexity</b>: Linear to the number of elements in x.   BOOST_CONTAINER_FORCEINLINE vector& operator=(BOOST_COPY_ASSIGN_REF(vector) x)   {      if (BOOST_LIKELY(&x != this)){         this->priv_copy_assign(x);      }      return *this;   }   #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)   //! <b>Effects</b>: Make *this container contains elements from il.   //!   //! <b>Complexity</b>: Linear to the range [il.begin(), il.end()).   BOOST_CONTAINER_FORCEINLINE vector& operator=(std::initializer_list<value_type> il)   {      this->assign(il.begin(), il.end());      return *this;   }   #endif   //! <b>Effects</b>: Move assignment. All x's values are transferred to *this.   //!   //! <b>Postcondition</b>: x.empty(). *this contains a the elements x had   //!   before the function.   //!   //! <b>Throws</b>: If allocator_traits_type::propagate_on_container_move_assignment   //!   is false and (allocation throws or value_type's move constructor throws)   //!   //! <b>Complexity</b>: Constant if allocator_traits_type::   //!   propagate_on_container_move_assignment is true or   //!   this->get>allocator() == x.get_allocator(). Linear otherwise.   BOOST_CONTAINER_FORCEINLINE vector& operator=(BOOST_RV_REF(vector) x)      BOOST_NOEXCEPT_IF(allocator_traits_type::propagate_on_container_move_assignment::value                        || allocator_traits_type::is_always_equal::value)   {      if (BOOST_LIKELY(&x != this)){         this->priv_move_assign(boost::move(x));      }      return *this;   }   #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)   //! <b>Effects</b>: Move assignment. All x's values are transferred to *this.   //!   //! <b>Postcondition</b>: x.empty(). *this contains a the elements x had   //!   before the function.   //!   //! <b>Throws</b>: If move constructor/assignment of T throws or allocation throws   //!   //! <b>Complexity</b>: Linear.   //!   //! <b>Note</b>: Non-standard extension to support static_vector   template<class OtherA>   BOOST_CONTAINER_FORCEINLINE typename dtl::enable_if_and                           < vector&                           , dtl::is_version<typename real_allocator<T, OtherA>::type, 0>                           , dtl::is_different<typename real_allocator<T, OtherA>::type, allocator_type>                           >::type      operator=(BOOST_RV_REF_BEG vector<value_type, OtherA, Options> BOOST_RV_REF_END x)   {      this->priv_move_assign(boost::move(x));      return *this;   }   //! <b>Effects</b>: Copy assignment. All x's values are copied to *this.   //!   //! <b>Postcondition</b>: x.empty(). *this contains a the elements x had   //!   before the function.   //!   //! <b>Throws</b>: If move constructor/assignment of T throws or allocation throws   //!   //! <b>Complexity</b>: Linear.   //!   //! <b>Note</b>: Non-standard extension to support static_vector   template<class OtherA>   BOOST_CONTAINER_FORCEINLINE typename dtl::enable_if_and                           < vector&                           , dtl::is_version<typename real_allocator<T, OtherA>::type, 0>                           , dtl::is_different<typename real_allocator<T, OtherA>::type, allocator_type>                           >::type      operator=(const vector<value_type, OtherA, Options> &x)   {      this->priv_copy_assign(x);      return *this;   }   #endif   //! <b>Effects</b>: Assigns the the range [first, last) to *this.   //!   //! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment or   //!   T's constructor/assignment from dereferencing InpIt throws.   //!   //! <b>Complexity</b>: Linear to n.   template <class InIt>   void assign(InIt first, InIt last      //Input iterators or version 0 allocator      BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or         < void         BOOST_MOVE_I dtl::is_convertible<InIt BOOST_MOVE_I size_type>         BOOST_MOVE_I dtl::and_            < dtl::is_different<alloc_version BOOST_MOVE_I version_0>            BOOST_MOVE_I dtl::is_not_input_iterator<InIt>            >         >::type * = 0)      )   {      //Overwrite all elements we can from [first, last)      iterator cur = this->begin();      const iterator end_it = this->end();      for ( ; first != last && cur != end_it; ++cur, ++first){         *cur = *first;      }      if (first == last){         //There are no more elements in the sequence, erase remaining         T* const end_pos = this->priv_raw_end();         const size_type n = static_cast<size_type>(end_pos - boost::movelib::iterator_to_raw_pointer(cur));         this->priv_destroy_last_n(n);      }      else{         //There are more elements in the range, insert the remaining ones         this->insert(this->cend(), first, last);      }   }   #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)   //! <b>Effects</b>: Assigns the the range [il.begin(), il.end()) to *this.   //!   //! <b>Throws</b>: If memory allocation throws or   //!   T's constructor from dereferencing iniializer_list iterator throws.   //!   BOOST_CONTAINER_FORCEINLINE void assign(std::initializer_list<T> il)   {      this->assign(il.begin(), il.end());   }   #endif   //! <b>Effects</b>: Assigns the the range [first, last) to *this.   //!   //! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment or   //!   T's constructor/assignment from dereferencing InpIt throws.   //!   //! <b>Complexity</b>: Linear to n.   template <class FwdIt>   void assign(FwdIt first, FwdIt last      //Forward iterators and version > 0 allocator      BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or         < void         BOOST_MOVE_I dtl::is_same<alloc_version BOOST_MOVE_I version_0>         BOOST_MOVE_I dtl::is_convertible<FwdIt BOOST_MOVE_I size_type>         BOOST_MOVE_I dtl::is_input_iterator<FwdIt>         >::type * = 0)      )   {      //For Fwd iterators the standard only requires EmplaceConstructible and assignable from *first      //so we can't do any backwards allocation      const size_type input_sz = static_cast<size_type>(boost::container::iterator_distance(first, last));      const size_type old_capacity = this->capacity();      if(input_sz > old_capacity){  //If input range is too big, we need to reallocate         size_type real_cap = 0;         pointer reuse(this->m_holder.start());         pointer const ret(this->m_holder.allocation_command(allocate_new|expand_fwd, input_sz, real_cap = input_sz, reuse));         if(!reuse){  //New allocation, just emplace new values            #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS            ++this->num_alloc;            #endif            pointer const old_p = this->m_holder.start();            if(old_p){               this->priv_destroy_all();               this->m_holder.deallocate(old_p, old_capacity);            }            this->m_holder.start(ret);            this->m_holder.capacity(real_cap);            this->m_holder.m_size = 0;            this->priv_uninitialized_construct_at_end(first, last);            return;         }         else{            #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS            ++this->num_expand_fwd;            #endif            this->m_holder.capacity(real_cap);            //Forward expansion, use assignment + back deletion/construction that comes later         }      }      boost::container::copy_assign_range_alloc_n(this->m_holder.alloc(), first, input_sz, this->priv_raw_begin(), this->size());      this->m_holder.m_size = input_sz;   }   //! <b>Effects</b>: Assigns the n copies of val to *this.   //!   //! <b>Throws</b>: If memory allocation throws or   //!   T's copy/move constructor/assignment throws.   //!   //! <b>Complexity</b>: Linear to n.   BOOST_CONTAINER_FORCEINLINE void assign(size_type n, const value_type& val)   {  this->assign(cvalue_iterator(val, n), cvalue_iterator());   }   //! <b>Effects</b>: Returns a copy of the internal allocator.   //!   //! <b>Throws</b>: If allocator's copy constructor throws.   //!   //! <b>Complexity</b>: Constant.   allocator_type get_allocator() const BOOST_NOEXCEPT_OR_NOTHROW   { return this->m_holder.alloc();  }   //! <b>Effects</b>: Returns a reference to the internal allocator.   //!   //! <b>Throws</b>: Nothing   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Non-standard extension.   BOOST_CONTAINER_FORCEINLINE stored_allocator_type &get_stored_allocator() BOOST_NOEXCEPT_OR_NOTHROW   {  return this->m_holder.alloc(); }   //! <b>Effects</b>: Returns a reference to the internal allocator.   //!   //! <b>Throws</b>: Nothing   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Non-standard extension.   BOOST_CONTAINER_FORCEINLINE const stored_allocator_type &get_stored_allocator() const BOOST_NOEXCEPT_OR_NOTHROW   {  return this->m_holder.alloc(); }   //////////////////////////////////////////////   //   //                iterators   //   //////////////////////////////////////////////   //! <b>Effects</b>: Returns an iterator to the first element contained in the vector.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE iterator begin() BOOST_NOEXCEPT_OR_NOTHROW   { return iterator(this->m_holder.start()); }   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE const_iterator begin() const BOOST_NOEXCEPT_OR_NOTHROW   { return const_iterator(this->m_holder.start()); }   //! <b>Effects</b>: Returns an iterator to the end of the vector.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE iterator end() BOOST_NOEXCEPT_OR_NOTHROW   {      pointer   const bg = this->m_holder.start();      size_type const sz = this->m_holder.m_size;      return iterator(BOOST_LIKELY(sz) ? bg + sz : bg);  //Avoid UB on null-pointer arithmetic   }   //! <b>Effects</b>: Returns a const_iterator to the end of the vector.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE const_iterator end() const BOOST_NOEXCEPT_OR_NOTHROW   { return this->cend(); }   //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning   //! of the reversed vector.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE reverse_iterator rbegin() BOOST_NOEXCEPT_OR_NOTHROW   { return reverse_iterator(this->end());      }   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning   //! of the reversed vector.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE const_reverse_iterator rbegin() const BOOST_NOEXCEPT_OR_NOTHROW   { return this->crbegin(); }   //! <b>Effects</b>: Returns a reverse_iterator pointing to the end   //! of the reversed vector.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE reverse_iterator rend() BOOST_NOEXCEPT_OR_NOTHROW   { return reverse_iterator(this->begin());       }   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end   //! of the reversed vector.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE const_reverse_iterator rend() const BOOST_NOEXCEPT_OR_NOTHROW   { return this->crend(); }   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE const_iterator cbegin() const BOOST_NOEXCEPT_OR_NOTHROW   { return const_iterator(this->m_holder.start()); }   //! <b>Effects</b>: Returns a const_iterator to the end of the vector.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE const_iterator cend() const BOOST_NOEXCEPT_OR_NOTHROW   {      pointer   const bg = this->m_holder.start();      size_type const sz = this->m_holder.m_size;      return const_iterator(BOOST_LIKELY(sz) ? bg + sz : bg);  //Avoid UB on null-pointer arithmetic   }   //{ return const_iterator(this->m_holder.start() + this->m_holder.m_size); }   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning   //! of the reversed vector.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE const_reverse_iterator crbegin() const BOOST_NOEXCEPT_OR_NOTHROW   { return const_reverse_iterator(this->end());}   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end   //! of the reversed vector.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE const_reverse_iterator crend() const BOOST_NOEXCEPT_OR_NOTHROW   { return const_reverse_iterator(this->begin()); }   //////////////////////////////////////////////   //   //                capacity   //   //////////////////////////////////////////////   //! <b>Effects</b>: Returns true if the vector contains no elements.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE bool empty() const BOOST_NOEXCEPT_OR_NOTHROW   { return !this->m_holder.m_size; }   //! <b>Effects</b>: Returns the number of the elements contained in the vector.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE size_type size() const BOOST_NOEXCEPT_OR_NOTHROW   { return this->m_holder.m_size; }   //! <b>Effects</b>: Returns the largest possible size of the vector.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE size_type max_size() const BOOST_NOEXCEPT_OR_NOTHROW   { return allocator_traits_type::max_size(this->m_holder.alloc()); }   //! <b>Effects</b>: Inserts or erases elements at the end such that   //!   the size becomes n. New elements are value initialized.   //!   //! <b>Throws</b>: If memory allocation throws, or T's copy/move or value initialization throws.   //!   //! <b>Complexity</b>: Linear to the difference between size() and new_size.   void resize(size_type new_size)   {  this->priv_resize(new_size, value_init);  }   //! <b>Effects</b>: Inserts or erases elements at the end such that   //!   the size becomes n. New elements are default initialized.   //!   //! <b>Throws</b>: If memory allocation throws, or T's copy/move or default initialization throws.   //!   //! <b>Complexity</b>: Linear to the difference between size() and new_size.   //!   //! <b>Note</b>: Non-standard extension   void resize(size_type new_size, default_init_t)   {  this->priv_resize(new_size, default_init);  }   //! <b>Effects</b>: Inserts or erases elements at the end such that   //!   the size becomes n. New elements are copy constructed from x.   //!   //! <b>Throws</b>: If memory allocation throws, or T's copy/move constructor throws.   //!   //! <b>Complexity</b>: Linear to the difference between size() and new_size.   void resize(size_type new_size, const T& x)   {  this->priv_resize(new_size, x);  }   //! <b>Effects</b>: Number of elements for which memory has been allocated.   //!   capacity() is always greater than or equal to size().   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE size_type capacity() const BOOST_NOEXCEPT_OR_NOTHROW   { return this->m_holder.capacity(); }   //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no   //!   effect. Otherwise, it is a request for allocation of additional memory.   //!   If the request is successful, then capacity() is greater than or equal to   //!   n; otherwise, capacity() is unchanged. In either case, size() is unchanged.   //!   //! <b>Throws</b>: If memory allocation allocation throws or T's copy/move constructor throws.   BOOST_CONTAINER_FORCEINLINE void reserve(size_type new_cap)   {      if (this->capacity() < new_cap){         this->priv_reserve_no_capacity(new_cap, alloc_version());      }   }   //! <b>Effects</b>: Tries to deallocate the excess of memory created   //!   with previous allocations. The size of the vector is unchanged   //!   //! <b>Throws</b>: If memory allocation throws, or T's copy/move constructor throws.   //!   //! <b>Complexity</b>: Linear to size().   BOOST_CONTAINER_FORCEINLINE void shrink_to_fit()   {  this->priv_shrink_to_fit(alloc_version());   }   //////////////////////////////////////////////   //   //               element access   //   //////////////////////////////////////////////   //! <b>Requires</b>: !empty()   //!   //! <b>Effects</b>: Returns a reference to the first   //!   element of the container.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   reference         front() BOOST_NOEXCEPT_OR_NOTHROW   {      BOOST_ASSERT(!this->empty());      return *this->m_holder.start();   }   //! <b>Requires</b>: !empty()   //!   //! <b>Effects</b>: Returns a const reference to the first   //!   element of the container.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   const_reference   front() const BOOST_NOEXCEPT_OR_NOTHROW   {      BOOST_ASSERT(!this->empty());      return *this->m_holder.start();   }   //! <b>Requires</b>: !empty()   //!   //! <b>Effects</b>: Returns a reference to the last   //!   element of the container.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   reference         back() BOOST_NOEXCEPT_OR_NOTHROW   {      BOOST_ASSERT(!this->empty());      return this->m_holder.start()[this->m_holder.m_size - 1];   }   //! <b>Requires</b>: !empty()   //!   //! <b>Effects</b>: Returns a const reference to the last   //!   element of the container.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   const_reference   back()  const BOOST_NOEXCEPT_OR_NOTHROW   {      BOOST_ASSERT(!this->empty());      return this->m_holder.start()[this->m_holder.m_size - 1];   }   //! <b>Requires</b>: size() > n.   //!   //! <b>Effects</b>: Returns a reference to the nth element   //!   from the beginning of the container.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   reference operator[](size_type n) BOOST_NOEXCEPT_OR_NOTHROW   {      BOOST_ASSERT(this->m_holder.m_size > n);      return this->m_holder.start()[n];   }   //! <b>Requires</b>: size() > n.   //!   //! <b>Effects</b>: Returns a const reference to the nth element   //!   from the beginning of the container.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   const_reference operator[](size_type n) const BOOST_NOEXCEPT_OR_NOTHROW   {      BOOST_ASSERT(this->m_holder.m_size > n);      return this->m_holder.start()[n];   }   //! <b>Requires</b>: size() >= n.   //!   //! <b>Effects</b>: Returns an iterator to the nth element   //!   from the beginning of the container. Returns end()   //!   if n == size().   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Non-standard extension   iterator nth(size_type n) BOOST_NOEXCEPT_OR_NOTHROW   {      BOOST_ASSERT(this->m_holder.m_size >= n);      return iterator(this->m_holder.start()+n);   }   //! <b>Requires</b>: size() >= n.   //!   //! <b>Effects</b>: Returns a const_iterator to the nth element   //!   from the beginning of the container. Returns end()   //!   if n == size().   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Non-standard extension   const_iterator nth(size_type n) const BOOST_NOEXCEPT_OR_NOTHROW   {      BOOST_ASSERT(this->m_holder.m_size >= n);      return const_iterator(this->m_holder.start()+n);   }   //! <b>Requires</b>: begin() <= p <= end().   //!   //! <b>Effects</b>: Returns the index of the element pointed by p   //!   and size() if p == end().   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Non-standard extension   size_type index_of(iterator p) BOOST_NOEXCEPT_OR_NOTHROW   {      //Range check assert done in priv_index_of      return this->priv_index_of(vector_iterator_get_ptr(p));   }   //! <b>Requires</b>: begin() <= p <= end().   //!   //! <b>Effects</b>: Returns the index of the element pointed by p   //!   and size() if p == end().   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   //!   //! <b>Note</b>: Non-standard extension   size_type index_of(const_iterator p) const BOOST_NOEXCEPT_OR_NOTHROW   {      //Range check assert done in priv_index_of      return this->priv_index_of(vector_iterator_get_ptr(p));   }   //! <b>Requires</b>: size() > n.   //!   //! <b>Effects</b>: Returns a reference to the nth element   //!   from the beginning of the container.   //!   //! <b>Throws</b>: std::range_error if n >= size()   //!   //! <b>Complexity</b>: Constant.   reference at(size_type n)   {      this->priv_throw_if_out_of_range(n);      return this->m_holder.start()[n];   }   //! <b>Requires</b>: size() > n.   //!   //! <b>Effects</b>: Returns a const reference to the nth element   //!   from the beginning of the container.   //!   //! <b>Throws</b>: std::range_error if n >= size()   //!   //! <b>Complexity</b>: Constant.   const_reference at(size_type n) const   {      this->priv_throw_if_out_of_range(n);      return this->m_holder.start()[n];   }   //////////////////////////////////////////////   //   //                 data access   //   //////////////////////////////////////////////   //! <b>Returns</b>: A pointer such that [data(),data() + size()) is a valid range.   //!   For a non-empty vector, data() == &front().   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   T* data() BOOST_NOEXCEPT_OR_NOTHROW   { return this->priv_raw_begin(); }   //! <b>Returns</b>: A pointer such that [data(),data() + size()) is a valid range.   //!   For a non-empty vector, data() == &front().   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   const T * data()  const BOOST_NOEXCEPT_OR_NOTHROW   { return this->priv_raw_begin(); }   //////////////////////////////////////////////   //   //                modifiers   //   //////////////////////////////////////////////   #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)   //! <b>Effects</b>: Inserts an object of type T constructed with   //!   std::forward<Args>(args)... in the end of the vector.   //!   //! <b>Returns</b>: A reference to the created object.   //!   //! <b>Throws</b>: If memory allocation throws or the in-place constructor throws or   //!   T's copy/move constructor throws.   //!   //! <b>Complexity</b>: Amortized constant time.   template<class ...Args>   BOOST_CONTAINER_FORCEINLINE reference emplace_back(BOOST_FWD_REF(Args)...args)   {      if (BOOST_LIKELY(this->room_enough())){         //There is more memory, just construct a new object at the end         T* const p = this->priv_raw_end();         allocator_traits_type::construct(this->m_holder.alloc(), p, ::boost::forward<Args>(args)...);         ++this->m_holder.m_size;         return *p;      }      else{         typedef dtl::insert_emplace_proxy<allocator_type, T*, Args...> type;         return *this->priv_forward_range_insert_no_capacity            (this->back_ptr(), 1, type(::boost::forward<Args>(args)...), alloc_version());      }   }   //! <b>Effects</b>: Inserts an object of type T constructed with   //!   std::forward<Args>(args)... in the end of the vector.   //!   //! <b>Throws</b>: If the in-place constructor throws.   //!   //! <b>Complexity</b>: Constant time.   //!   //! <b>Note</b>: Non-standard extension.   template<class ...Args>   BOOST_CONTAINER_FORCEINLINE bool stable_emplace_back(BOOST_FWD_REF(Args)...args)   {      const bool is_room_enough = this->room_enough() || (alloc_version::value == 2 && this->m_holder.try_expand_fwd(1u));      if (BOOST_LIKELY(is_room_enough)){         //There is more memory, just construct a new object at the end         allocator_traits_type::construct(this->m_holder.alloc(), this->priv_raw_end(), ::boost::forward<Args>(args)...);         ++this->m_holder.m_size;      }      return is_room_enough;   }   //! <b>Requires</b>: position must be a valid iterator of *this.   //!   //! <b>Effects</b>: Inserts an object of type T constructed with   //!   std::forward<Args>(args)... before position   //!   //! <b>Throws</b>: If memory allocation throws or the in-place constructor throws or   //!   T's copy/move constructor/assignment throws.   //!   //! <b>Complexity</b>: If position is end(), amortized constant time   //!   Linear time otherwise.   template<class ...Args>   iterator emplace(const_iterator position, BOOST_FWD_REF(Args) ...args)   {      BOOST_ASSERT(this->priv_in_range_or_end(position));      //Just call more general insert(pos, size, value) and return iterator      typedef dtl::insert_emplace_proxy<allocator_type, T*, Args...> type;      return this->priv_forward_range_insert( vector_iterator_get_ptr(position), 1                                            , type(::boost::forward<Args>(args)...));   }   #else // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)   #define BOOST_CONTAINER_VECTOR_EMPLACE_CODE(N) \   BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \   BOOST_CONTAINER_FORCEINLINE reference emplace_back(BOOST_MOVE_UREF##N)\   {\      if (BOOST_LIKELY(this->room_enough())){\         T* const p = this->priv_raw_end();\         allocator_traits_type::construct (this->m_holder.alloc()\            , this->priv_raw_end() BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\         ++this->m_holder.m_size;\         return *p;\      }\      else{\         typedef dtl::insert_emplace_proxy_arg##N<allocator_type, T* BOOST_MOVE_I##N BOOST_MOVE_TARG##N> type;\         return *this->priv_forward_range_insert_no_capacity\            ( this->back_ptr(), 1, type(BOOST_MOVE_FWD##N), alloc_version());\      }\   }\   \   BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \   BOOST_CONTAINER_FORCEINLINE bool stable_emplace_back(BOOST_MOVE_UREF##N)\   {\      const bool is_room_enough = this->room_enough() || (alloc_version::value == 2 && this->m_holder.try_expand_fwd(1u));\      if (BOOST_LIKELY(is_room_enough)){\         allocator_traits_type::construct (this->m_holder.alloc()\            , this->priv_raw_end() BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\         ++this->m_holder.m_size;\      }\      return is_room_enough;\   }\   \   BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \   iterator emplace(const_iterator pos BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\   {\      BOOST_ASSERT(this->priv_in_range_or_end(pos));\      typedef dtl::insert_emplace_proxy_arg##N<allocator_type, T* BOOST_MOVE_I##N BOOST_MOVE_TARG##N> type;\      return this->priv_forward_range_insert(vector_iterator_get_ptr(pos), 1, type(BOOST_MOVE_FWD##N));\   }\   //   BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_VECTOR_EMPLACE_CODE)   #undef BOOST_CONTAINER_VECTOR_EMPLACE_CODE   #endif   #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)   //! <b>Effects</b>: Inserts a copy of x at the end of the vector.   //!   //! <b>Throws</b>: If memory allocation throws or   //!   T's copy/move constructor throws.   //!   //! <b>Complexity</b>: Amortized constant time.   void push_back(const T &x);   //! <b>Effects</b>: Constructs a new element in the end of the vector   //!   and moves the resources of x to this new element.   //!   //! <b>Throws</b>: If memory allocation throws or   //!   T's copy/move constructor throws.   //!   //! <b>Complexity</b>: Amortized constant time.   void push_back(T &&x);   #else   BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back)   #endif   #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)   //! <b>Requires</b>: position must be a valid iterator of *this.   //!   //! <b>Effects</b>: Insert a copy of x before position.   //!   //! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment throws.   //!   //! <b>Complexity</b>: If position is end(), amortized constant time   //!   Linear time otherwise.   iterator insert(const_iterator position, const T &x);   //! <b>Requires</b>: position must be a valid iterator of *this.   //!   //! <b>Effects</b>: Insert a new element before position with x's resources.   //!   //! <b>Throws</b>: If memory allocation throws.   //!   //! <b>Complexity</b>: If position is end(), amortized constant time   //!   Linear time otherwise.   iterator insert(const_iterator position, T &&x);   #else   BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator, const_iterator)   #endif   //! <b>Requires</b>: p must be a valid iterator of *this.   //!   //! <b>Effects</b>: Insert n copies of x before pos.   //!   //! <b>Returns</b>: an iterator to the first inserted element or p if n is 0.   //!   //! <b>Throws</b>: If memory allocation throws or T's copy/move constructor throws.   //!   //! <b>Complexity</b>: Linear to n.   iterator insert(const_iterator p, size_type n, const T& x)   {      BOOST_ASSERT(this->priv_in_range_or_end(p));      dtl::insert_n_copies_proxy<allocator_type, T*> proxy(x);      return this->priv_forward_range_insert(vector_iterator_get_ptr(p), n, proxy);   }   //! <b>Requires</b>: p must be a valid iterator of *this.   //!   //! <b>Effects</b>: Insert a copy of the [first, last) range before pos.   //!   //! <b>Returns</b>: an iterator to the first inserted element or pos if first == last.   //!   //! <b>Throws</b>: If memory allocation throws, T's constructor from a   //!   dereferenced InpIt throws or T's copy/move constructor/assignment throws.   //!   //! <b>Complexity</b>: Linear to boost::container::iterator_distance [first, last).   template <class InIt>   iterator insert(const_iterator pos, InIt first, InIt last      #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)      , typename dtl::disable_if_or         < void         , dtl::is_convertible<InIt, size_type>         , dtl::is_not_input_iterator<InIt>         >::type * = 0      #endif      )   {      BOOST_ASSERT(this->priv_in_range_or_end(pos));      const size_type n_pos = pos - this->cbegin();      iterator it(vector_iterator_get_ptr(pos));      for(;first != last; ++first){         it = this->emplace(it, *first);         ++it;      }      return iterator(this->m_holder.start() + n_pos);   }   #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)   template <class FwdIt>   iterator insert(const_iterator pos, FwdIt first, FwdIt last      , typename dtl::disable_if_or         < void         , dtl::is_convertible<FwdIt, size_type>         , dtl::is_input_iterator<FwdIt>         >::type * = 0      )   {      BOOST_ASSERT(this->priv_in_range_or_end(pos));      dtl::insert_range_proxy<allocator_type, FwdIt, T*> proxy(first);      return this->priv_forward_range_insert(vector_iterator_get_ptr(pos), boost::container::iterator_distance(first, last), proxy);   }   #endif   //! <b>Requires</b>: p must be a valid iterator of *this. num, must   //!   be equal to boost::container::iterator_distance(first, last)   //!   //! <b>Effects</b>: Insert a copy of the [first, last) range before pos.   //!   //! <b>Returns</b>: an iterator to the first inserted element or pos if first == last.   //!   //! <b>Throws</b>: If memory allocation throws, T's constructor from a   //!   dereferenced InpIt throws or T's copy/move constructor/assignment throws.   //!   //! <b>Complexity</b>: Linear to boost::container::iterator_distance [first, last).   //!   //! <b>Note</b>: This function avoids a linear operation to calculate boost::container::iterator_distance[first, last)   //!   for forward and bidirectional iterators, and a one by one insertion for input iterators. This is a   //!   a non-standard extension.   #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)   template <class InIt>   iterator insert(const_iterator pos, size_type num, InIt first, InIt last)   {      BOOST_ASSERT(this->priv_in_range_or_end(pos));      BOOST_ASSERT(dtl::is_input_iterator<InIt>::value ||                   num == static_cast<size_type>(boost::container::iterator_distance(first, last)));      (void)last;      dtl::insert_range_proxy<allocator_type, InIt, T*> proxy(first);      return this->priv_forward_range_insert(vector_iterator_get_ptr(pos), num, proxy);   }   #endif   #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)   //! <b>Requires</b>: position must be a valid iterator of *this.   //!   //! <b>Effects</b>: Insert a copy of the [il.begin(), il.end()) range before position.   //!   //! <b>Returns</b>: an iterator to the first inserted element or position if first == last.   //!   //! <b>Complexity</b>: Linear to the range [il.begin(), il.end()).   iterator insert(const_iterator position, std::initializer_list<value_type> il)   {      //Assertion done in insert()      return this->insert(position, il.begin(), il.end());   }   #endif   //! <b>Effects</b>: Removes the last element from the container.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant time.   void pop_back() BOOST_NOEXCEPT_OR_NOTHROW   {      BOOST_ASSERT(!this->empty());      //Destroy last element      this->priv_destroy_last();   }   //! <b>Effects</b>: Erases the element at position pos.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the elements between pos and the   //!   last element. Constant if pos is the last element.   iterator erase(const_iterator position)   {      BOOST_ASSERT(this->priv_in_range(position));      const pointer p = vector_iterator_get_ptr(position);      T *const pos_ptr = boost::movelib::to_raw_pointer(p);      T *const beg_ptr = this->priv_raw_begin();      T *const new_end_ptr = ::boost::container::move(pos_ptr + 1, beg_ptr + this->m_holder.m_size, pos_ptr);      //Move elements forward and destroy last      this->priv_destroy_last(pos_ptr != new_end_ptr);      return iterator(p);   }   //! <b>Effects</b>: Erases the elements pointed by [first, last).   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the distance between first and last   //!   plus linear to the elements between pos and the last element.   iterator erase(const_iterator first, const_iterator last)   {      if (first != last){         BOOST_ASSERT(this->priv_in_range(first));         BOOST_ASSERT(this->priv_in_range_or_end(last));         BOOST_ASSERT(first < last);         T* const old_end_ptr = this->priv_raw_end();         T* const first_ptr = boost::movelib::to_raw_pointer(vector_iterator_get_ptr(first));         T* const last_ptr  = boost::movelib::to_raw_pointer(vector_iterator_get_ptr(last));         T* const ptr = boost::movelib::to_raw_pointer(boost::container::move(last_ptr, old_end_ptr, first_ptr));         this->priv_destroy_last_n(old_end_ptr - ptr);      }      return iterator(vector_iterator_get_ptr(first));   }   //! <b>Effects</b>: Swaps the contents of *this and x.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE void swap(vector& x)      BOOST_NOEXCEPT_IF( ((allocator_traits_type::propagate_on_container_swap::value                                    || allocator_traits_type::is_always_equal::value) &&                                    !dtl::is_version<allocator_type, 0>::value))   {      this->priv_swap(x, dtl::bool_<dtl::is_version<allocator_type, 0>::value>());   }   #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED   //! <b>Effects</b>: Swaps the contents of *this and x.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear   //!   //! <b>Note</b>: Non-standard extension to support static_vector   template<class OtherA>   BOOST_CONTAINER_FORCEINLINE void swap(vector<T, OtherA, Options> & x            , typename dtl::enable_if_and                     < void                     , dtl::is_version<typename real_allocator<T, OtherA>::type, 0>                     , dtl::is_different<typename real_allocator<T, OtherA>::type, allocator_type>                     >::type * = 0            )   {  this->m_holder.deep_swap(x.m_holder); }   #endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED   //! <b>Effects</b>: Erases all the elements of the vector.   //!   //! <b>Throws</b>: Nothing.   //!   //! <b>Complexity</b>: Linear to the number of elements in the container.   BOOST_CONTAINER_FORCEINLINE void clear() BOOST_NOEXCEPT_OR_NOTHROW   {  this->priv_destroy_all();  }   //! <b>Effects</b>: Returns true if x and y are equal   //!   //! <b>Complexity</b>: Linear to the number of elements in the container.   BOOST_CONTAINER_FORCEINLINE friend bool operator==(const vector& x, const vector& y)   {  return x.size() == y.size() && ::boost::container::algo_equal(x.begin(), x.end(), y.begin());  }   //! <b>Effects</b>: Returns true if x and y are unequal   //!   //! <b>Complexity</b>: Linear to the number of elements in the container.   BOOST_CONTAINER_FORCEINLINE friend bool operator!=(const vector& x, const vector& y)   {  return !(x == y); }   //! <b>Effects</b>: Returns true if x is less than y   //!   //! <b>Complexity</b>: Linear to the number of elements in the container.   friend bool operator<(const vector& x, const vector& y)   {      const_iterator first1(x.cbegin()), first2(y.cbegin());      const const_iterator last1(x.cend()), last2(y.cend());      for ( ; (first1 != last1) && (first2 != last2); ++first1, ++first2 ) {         if (*first1 < *first2) return true;         if (*first2 < *first1) return false;      }      return (first1 == last1) && (first2 != last2);   }   //! <b>Effects</b>: Returns true if x is greater than y   //!   //! <b>Complexity</b>: Linear to the number of elements in the container.   BOOST_CONTAINER_FORCEINLINE friend bool operator>(const vector& x, const vector& y)   {  return y < x;  }   //! <b>Effects</b>: Returns true if x is equal or less than y   //!   //! <b>Complexity</b>: Linear to the number of elements in the container.   BOOST_CONTAINER_FORCEINLINE friend bool operator<=(const vector& x, const vector& y)   {  return !(y < x);  }   //! <b>Effects</b>: Returns true if x is equal or greater than y   //!   //! <b>Complexity</b>: Linear to the number of elements in the container.   BOOST_CONTAINER_FORCEINLINE friend bool operator>=(const vector& x, const vector& y)   {  return !(x < y);  }   //! <b>Effects</b>: x.swap(y)   //!   //! <b>Complexity</b>: Constant.   BOOST_CONTAINER_FORCEINLINE friend void swap(vector& x, vector& y)   {  x.swap(y);  }   #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED   //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no   //!   effect. Otherwise, it is a request for allocation of additional memory   //!   (memory expansion) that will not invalidate iterators.   //!   If the request is successful, then capacity() is greater than or equal to   //!   n; otherwise, capacity() is unchanged. In either case, size() is unchanged.   //!   //! <b>Throws</b>: If memory allocation allocation throws or T's copy/move constructor throws.   //!   //! <b>Note</b>: Non-standard extension.   bool stable_reserve(size_type new_cap)   {      const size_type cp = this->capacity();      return cp >= new_cap || (alloc_version::value == 2 && this->m_holder.try_expand_fwd(new_cap - cp));   }   //Absolutely experimental. This function might change, disappear or simply crash!   template<class BiDirPosConstIt, class BiDirValueIt>   BOOST_CONTAINER_FORCEINLINE void insert_ordered_at(const size_type element_count, BiDirPosConstIt last_position_it, BiDirValueIt last_value_it)   {      typedef vector_insert_ordered_cursor<BiDirPosConstIt, BiDirValueIt> inserter_t;      return this->priv_insert_ordered_at(element_count, inserter_t(last_position_it, last_value_it));   }   template<class InputIt>   BOOST_CONTAINER_FORCEINLINE void merge(InputIt first, InputIt last)   {  this->merge(first, last, value_less_t());  }   template<class InputIt, class Compare>   BOOST_CONTAINER_FORCEINLINE void merge(InputIt first, InputIt last, Compare comp)   {      size_type const s = this->size();      size_type const c = this->capacity();      size_type n = 0;      size_type const free_cap = c - s;      //If not input iterator and new elements don't fit in the remaining capacity, merge in new buffer      if(!dtl::is_input_iterator<InputIt>::value &&         free_cap < (n = static_cast<size_type>(boost::container::iterator_distance(first, last)))){         this->priv_merge_in_new_buffer(first, n, comp, alloc_version());      }      else{         this->insert(this->cend(), first, last);         T *const raw_beg = this->priv_raw_begin();         T *const raw_end = this->priv_raw_end();         T *const raw_pos = raw_beg + s;         boost::movelib::adaptive_merge(raw_beg, raw_pos, raw_end, comp, raw_end, free_cap - n);      }   }   template<class InputIt>   BOOST_CONTAINER_FORCEINLINE void merge_unique(InputIt first, InputIt last)   {  this->merge_unique(first, last, value_less_t());  }   template<class InputIt, class Compare>   BOOST_CONTAINER_FORCEINLINE void merge_unique(InputIt first, InputIt last, Compare comp)   {      size_type const old_size = this->size();      this->priv_set_difference_back(first, last, comp);      T *const raw_beg = this->priv_raw_begin();      T *const raw_end = this->priv_raw_end();      T *raw_pos = raw_beg + old_size;      boost::movelib::adaptive_merge(raw_beg, raw_pos, raw_end, comp, raw_end, this->capacity() - this->size());   }   private:   template<class PositionValue>   void priv_insert_ordered_at(const size_type element_count, PositionValue position_value)   {      const size_type old_size_pos = this->size();      this->reserve(old_size_pos + element_count);      T* const begin_ptr = this->priv_raw_begin();      size_type insertions_left = element_count;      size_type prev_pos = old_size_pos;      size_type old_hole_size = element_count;      //Exception rollback. If any copy throws before the hole is filled, values      //already inserted/copied at the end of the buffer will be destroyed.      typename value_traits::ArrayDestructor past_hole_values_destroyer         (begin_ptr + old_size_pos + element_count, this->m_holder.alloc(), size_type(0u));      //Loop for each insertion backwards, first moving the elements after the insertion point,      //then inserting the element.      while(insertions_left){         --position_value;         size_type const pos = position_value.get_pos();         BOOST_ASSERT(pos != size_type(-1) && pos <= old_size_pos && pos <= prev_pos);         //If needed shift the range after the insertion point and the previous insertion point.         //Function will take care if the shift crosses the size() boundary, using copy/move         //or uninitialized copy/move if necessary.         size_type new_hole_size = (pos != prev_pos)            ? priv_insert_ordered_at_shift_range(pos, prev_pos, this->size(), insertions_left)            : old_hole_size            ;         if(new_hole_size){            //The hole was reduced by priv_insert_ordered_at_shift_range so expand exception rollback range backwards            past_hole_values_destroyer.increment_size_backwards(prev_pos - pos);            //Insert the new value in the hole            allocator_traits_type::construct(this->m_holder.alloc(), begin_ptr + pos + insertions_left - 1, position_value.get_val());            if(--new_hole_size){               //The hole was reduced by the new insertion by one               past_hole_values_destroyer.increment_size_backwards(size_type(1u));            }            else{               //Hole was just filled, disable exception rollback and change vector size               past_hole_values_destroyer.release();               this->m_holder.m_size += element_count;            }         }         else{            if(old_hole_size){               //Hole was just filled by priv_insert_ordered_at_shift_range, disable exception rollback and change vector size               past_hole_values_destroyer.release();               this->m_holder.m_size += element_count;            }            //Insert the new value in the already constructed range            begin_ptr[pos + insertions_left - 1] = position_value.get_val();         }         --insertions_left;         old_hole_size = new_hole_size;         prev_pos = pos;      }   }   template<class InputIt, class Compare>   void priv_set_difference_back(InputIt first1, InputIt last1, Compare comp)   {      T * old_first2 = this->priv_raw_begin();      T * first2 = old_first2;      T * last2  = this->priv_raw_end();      while (first1 != last1) {         if (first2 == last2){            this->insert(this->cend(), first1, last1);            return;         }         if (comp(*first1, *first2)) {            this->emplace_back(*first1);            T * const raw_begin = this->priv_raw_begin();            if(old_first2 != raw_begin)            {               //Reallocation happened, update range               first2 = raw_begin + (first2 - old_first2);               last2  = raw_begin + (last2 - old_first2);               old_first2 = raw_begin;            }            ++first1;         }         else {            if (!comp(*first2, *first1)) {               ++first1;            }            ++first2;         }      }   }   template<class FwdIt, class Compare>   BOOST_CONTAINER_FORCEINLINE void priv_merge_in_new_buffer(FwdIt, size_type, Compare, version_0)   {      alloc_holder_t::on_capacity_overflow();   }   template<class FwdIt, class Compare, class Version>   void priv_merge_in_new_buffer(FwdIt first, size_type n, Compare comp, Version)   {      size_type const new_size = this->size() + n;      size_type new_cap = new_size;      pointer p = pointer();      pointer const new_storage = this->m_holder.allocation_command(allocate_new, new_size, new_cap, p);      BOOST_ASSERT((new_cap >= this->size() ) && (new_cap - this->size()) >= n);      allocator_type &a = this->m_holder.alloc();      typename value_traits::ArrayDeallocator new_buffer_deallocator(new_storage, a, new_cap);      typename value_traits::ArrayDestructor  new_values_destroyer(new_storage, a, 0u);      T* pbeg  = this->priv_raw_begin();      size_type const old_size = this->size();      T* const pend = pbeg + old_size;      T* d_first = boost::movelib::to_raw_pointer(new_storage);      size_type added = n;      //Merge in new buffer loop      while(1){         if(!n) {            ::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), pbeg, pend, d_first);            break;         }          else if(pbeg == pend) {            ::boost::container::uninitialized_move_alloc_n(this->m_holder.alloc(), first, n, d_first);            break;         }         //maintain stability moving external values only if they are strictly less         else if(comp(*first, *pbeg)) {            allocator_traits_type::construct( this->m_holder.alloc(), d_first, *first );            new_values_destroyer.increment_size(1u);            ++first;            --n;            ++d_first;         }         else{            allocator_traits_type::construct( this->m_holder.alloc(), d_first, boost::move(*pbeg) );            new_values_destroyer.increment_size(1u);            ++pbeg;            ++d_first;         }      }      //Nothrow operations      pointer const old_p     = this->m_holder.start();      size_type const old_cap = this->m_holder.capacity();      boost::container::destroy_alloc_n(a, boost::movelib::to_raw_pointer(old_p), old_size);      if (old_cap > 0) {         this->m_holder.deallocate(old_p, old_cap);      }      this->m_holder.m_size = old_size + added;      this->m_holder.start(new_storage);      this->m_holder.capacity(new_cap);      new_buffer_deallocator.release();      new_values_destroyer.release();   }   BOOST_CONTAINER_FORCEINLINE bool room_enough() const   {  return this->m_holder.m_size < this->m_holder.capacity();   }   BOOST_CONTAINER_FORCEINLINE pointer back_ptr() const   {  return this->m_holder.start() + this->m_holder.m_size;  }   size_type priv_index_of(pointer p) const   {      BOOST_ASSERT(this->m_holder.start() <= p);      BOOST_ASSERT(p <= (this->m_holder.start()+this->size()));      return static_cast<size_type>(p - this->m_holder.start());   }   template<class OtherA>   void priv_move_assign(BOOST_RV_REF_BEG vector<T, OtherA, Options> BOOST_RV_REF_END x      , typename dtl::enable_if_c         < dtl::is_version<typename real_allocator<T, OtherA>::type, 0>::value >::type * = 0)   {      if(!dtl::is_same<typename real_allocator<T, OtherA>::type, allocator_type>::value &&          this->capacity() < x.size()){         alloc_holder_t::on_capacity_overflow();      }      T* const this_start  = this->priv_raw_begin();      T* const other_start = x.priv_raw_begin();      const size_type this_sz  = m_holder.m_size;      const size_type other_sz = static_cast<size_type>(x.m_holder.m_size);      boost::container::move_assign_range_alloc_n(this->m_holder.alloc(), other_start, other_sz, this_start, this_sz);      this->m_holder.m_size = other_sz;   }   template<class OtherA>   void priv_move_assign(BOOST_RV_REF_BEG vector<T, OtherA, Options> BOOST_RV_REF_END x      , typename dtl::disable_if_or         < void         , dtl::is_version<typename real_allocator<T, OtherA>::type, 0>         , dtl::is_different<typename real_allocator<T, OtherA>::type, allocator_type>         >::type * = 0)   {      //for move assignment, no aliasing (&x != this) is assumed.      //x.size() == 0 is allowed for buggy std libraries.      BOOST_ASSERT(this != &x || x.size() == 0);      allocator_type &this_alloc = this->m_holder.alloc();      allocator_type &x_alloc    = x.m_holder.alloc();      const bool propagate_alloc = allocator_traits_type::propagate_on_container_move_assignment::value;      const bool is_propagable_from_x = is_propagable_from(x_alloc, x.m_holder.start(), this_alloc, propagate_alloc);      //Resources can be transferred if both allocators are      //going to be equal after this function (either propagated or already equal)      if(is_propagable_from_x){         this->clear();         if(BOOST_LIKELY(!!this->m_holder.m_start))            this->m_holder.deallocate(this->m_holder.m_start, this->m_holder.m_capacity);         this->m_holder.steal_resources(x.m_holder);      }      //Else do a one by one move      else{         this->assign( boost::make_move_iterator(boost::movelib::iterator_to_raw_pointer(x.begin()))                     , boost::make_move_iterator(boost::movelib::iterator_to_raw_pointer(x.end()  ))                     );      }      //Move allocator if needed      dtl::move_alloc(this_alloc, x_alloc, dtl::bool_<propagate_alloc>());   }   template<class OtherA>   void priv_copy_assign(const vector<T, OtherA, Options> &x      , typename dtl::enable_if_c         < dtl::is_version<typename real_allocator<T, OtherA>::type, 0>::value >::type * = 0)   {      if(!dtl::is_same<typename real_allocator<T, OtherA>::type, allocator_type>::value &&         this->capacity() < x.size()){         alloc_holder_t::on_capacity_overflow();      }      T* const this_start  = this->priv_raw_begin();      T* const other_start = x.priv_raw_begin();      const size_type this_sz  = m_holder.m_size;      const size_type other_sz = static_cast<size_type>(x.m_holder.m_size);      boost::container::copy_assign_range_alloc_n(this->m_holder.alloc(), other_start, other_sz, this_start, this_sz);      this->m_holder.m_size = other_sz;   }   template<class OtherA>   typename dtl::disable_if_or      < void      , dtl::is_version<typename real_allocator<T, OtherA>::type, 0>      , dtl::is_different<typename real_allocator<T, OtherA>::type, allocator_type>      >::type      priv_copy_assign(const vector<T, OtherA, Options> &x)   {      allocator_type &this_alloc     = this->m_holder.alloc();      const allocator_type &x_alloc  = x.m_holder.alloc();      dtl::bool_<allocator_traits_type::         propagate_on_container_copy_assignment::value> flag;      if(flag && this_alloc != x_alloc){         this->clear();         this->shrink_to_fit();      }      dtl::assign_alloc(this_alloc, x_alloc, flag);      this->assign( x.priv_raw_begin(), x.priv_raw_end() );   }   template<class Vector>  //Template it to avoid it in explicit instantiations   void priv_swap(Vector &x, dtl::true_type)   //version_0   {  this->m_holder.deep_swap(x.m_holder);  }   template<class Vector>  //Template it to avoid it in explicit instantiations   void priv_swap(Vector &x, dtl::false_type)  //version_N   {      const bool propagate_alloc = allocator_traits_type::propagate_on_container_swap::value;      if(are_swap_propagable( this->get_stored_allocator(), this->m_holder.start()                            , x.get_stored_allocator(), x.m_holder.start(), propagate_alloc)){         //Just swap internals         this->m_holder.swap_resources(x.m_holder);      }      else{         if (BOOST_UNLIKELY(&x == this))            return;         //Else swap element by element...         bool const t_smaller = this->size() < x.size();         vector &sml = t_smaller ? *this : x;         vector &big = t_smaller ? x : *this;         size_type const common_elements = sml.size();         for(size_type i = 0; i != common_elements; ++i){            boost::adl_move_swap(sml[i], big[i]);         }         //... and move-insert the remaining range         sml.insert( sml.cend()                   , boost::make_move_iterator(boost::movelib::iterator_to_raw_pointer(big.nth(common_elements)))                   , boost::make_move_iterator(boost::movelib::iterator_to_raw_pointer(big.end()))                   );         //Destroy remaining elements         big.erase(big.nth(common_elements), big.cend());      }      //And now swap the allocator      dtl::swap_alloc(this->m_holder.alloc(), x.m_holder.alloc(), dtl::bool_<propagate_alloc>());   }   void priv_reserve_no_capacity(size_type, version_0)   {  alloc_holder_t::on_capacity_overflow();  }   dtl::insert_range_proxy<allocator_type, boost::move_iterator<T*>, T*> priv_dummy_empty_proxy()   {      return dtl::insert_range_proxy<allocator_type, boost::move_iterator<T*>, T*>         (::boost::make_move_iterator((T *)0));   }   void priv_reserve_no_capacity(size_type new_cap, version_1)   {      //There is not enough memory, allocate a new buffer      //Pass the hint so that allocators can take advantage of this.      pointer const p = this->m_holder.allocate(new_cap);      //We will reuse insert code, so create a dummy input iterator      this->priv_forward_range_insert_new_allocation         ( boost::movelib::to_raw_pointer(p), new_cap, this->priv_raw_end(), 0, this->priv_dummy_empty_proxy());   }   void priv_reserve_no_capacity(size_type new_cap, version_2)   {      //There is not enough memory, allocate a new      //buffer or expand the old one.      bool same_buffer_start;      size_type real_cap = 0;      pointer reuse(this->m_holder.start());      pointer const ret(this->m_holder.allocation_command(allocate_new | expand_fwd | expand_bwd, new_cap, real_cap = new_cap, reuse));      //Check for forward expansion      same_buffer_start = reuse && this->m_holder.start() == ret;      if(same_buffer_start){         #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS         ++this->num_expand_fwd;         #endif         this->m_holder.capacity(real_cap);      }      else{ //If there is no forward expansion, move objects, we will reuse insertion code         T * const new_mem = boost::movelib::to_raw_pointer(ret);         T * const ins_pos = this->priv_raw_end();         if(reuse){   //Backwards (and possibly forward) expansion            #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS            ++this->num_expand_bwd;            #endif            this->priv_forward_range_insert_expand_backwards               ( new_mem , real_cap, ins_pos, 0, this->priv_dummy_empty_proxy());         }         else{ //New buffer            #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS            ++this->num_alloc;            #endif            this->priv_forward_range_insert_new_allocation               ( new_mem, real_cap, ins_pos, 0, this->priv_dummy_empty_proxy());         }      }   }   void priv_destroy_last(const bool moved = false) BOOST_NOEXCEPT_OR_NOTHROW   {      (void)moved;      const bool skip_destructor = value_traits::trivial_dctr || (value_traits::trivial_dctr_after_move && moved);      if(!skip_destructor){         value_type* const p = this->priv_raw_end() - 1;         allocator_traits_type::destroy(this->get_stored_allocator(), p);      }      --this->m_holder.m_size;   }   void priv_destroy_last_n(const size_type n) BOOST_NOEXCEPT_OR_NOTHROW   {      BOOST_ASSERT(n <= this->m_holder.m_size);      if(!value_traits::trivial_dctr){         T* const destroy_pos = this->priv_raw_begin() + (this->m_holder.m_size-n);         boost::container::destroy_alloc_n(this->get_stored_allocator(), destroy_pos, n);      }      this->m_holder.m_size -= n;   }   template<class InpIt>   void priv_uninitialized_construct_at_end(InpIt first, InpIt last)   {      T* const old_end_pos = this->priv_raw_end();      T* const new_end_pos = boost::container::uninitialized_copy_alloc(this->m_holder.alloc(), first, last, old_end_pos);      this->m_holder.m_size += new_end_pos - old_end_pos;   }   void priv_destroy_all() BOOST_NOEXCEPT_OR_NOTHROW   {      boost::container::destroy_alloc_n         (this->get_stored_allocator(), this->priv_raw_begin(), this->m_holder.m_size);      this->m_holder.m_size = 0;   }   template<class U>   iterator priv_insert(const const_iterator &p, BOOST_FWD_REF(U) x)   {      BOOST_ASSERT(this->priv_in_range_or_end(p));      return this->priv_forward_range_insert         ( vector_iterator_get_ptr(p), 1, dtl::get_insert_value_proxy<T*, allocator_type>(::boost::forward<U>(x)));   }   BOOST_CONTAINER_FORCEINLINE dtl::insert_copy_proxy<allocator_type, T*> priv_single_insert_proxy(const T &x)   {  return dtl::insert_copy_proxy<allocator_type, T*> (x);  }   BOOST_CONTAINER_FORCEINLINE dtl::insert_move_proxy<allocator_type, T*> priv_single_insert_proxy(BOOST_RV_REF(T) x)   {  return dtl::insert_move_proxy<allocator_type, T*> (x);  }   template <class U>   void priv_push_back(BOOST_FWD_REF(U) u)   {      if (BOOST_LIKELY(this->room_enough())){         //There is more memory, just construct a new object at the end         allocator_traits_type::construct            ( this->m_holder.alloc(), this->priv_raw_end(), ::boost::forward<U>(u) );         ++this->m_holder.m_size;      }      else{         this->priv_forward_range_insert_no_capacity            ( this->back_ptr(), 1            , this->priv_single_insert_proxy(::boost::forward<U>(u)), alloc_version());      }   }   BOOST_CONTAINER_FORCEINLINE dtl::insert_n_copies_proxy<allocator_type, T*> priv_resize_proxy(const T &x)   {  return dtl::insert_n_copies_proxy<allocator_type, T*>(x);   }   BOOST_CONTAINER_FORCEINLINE dtl::insert_default_initialized_n_proxy<allocator_type, T*> priv_resize_proxy(default_init_t)   {  return dtl::insert_default_initialized_n_proxy<allocator_type, T*>();  }   BOOST_CONTAINER_FORCEINLINE dtl::insert_value_initialized_n_proxy<allocator_type, T*> priv_resize_proxy(value_init_t)   {  return dtl::insert_value_initialized_n_proxy<allocator_type, T*>(); }   template <class U>   void priv_resize(size_type new_size, const U& u)   {      const size_type sz = this->size();      if (new_size < sz){         //Destroy last elements         this->priv_destroy_last_n(sz - new_size);      }      else{         const size_type n = new_size - this->size();         this->priv_forward_range_insert_at_end(n, this->priv_resize_proxy(u), alloc_version());      }   }   BOOST_CONTAINER_FORCEINLINE void priv_shrink_to_fit(version_0) BOOST_NOEXCEPT_OR_NOTHROW   {}   void priv_shrink_to_fit(version_1)   {      const size_type cp = this->m_holder.capacity();      if(cp){         const size_type sz = this->size();         if(!sz){            if(BOOST_LIKELY(!!this->m_holder.m_start))               this->m_holder.deallocate(this->m_holder.m_start, cp);            this->m_holder.m_start     = pointer();            this->m_holder.m_capacity  = 0;         }         else if(sz < cp){            //Allocate a new buffer.            //Pass the hint so that allocators can take advantage of this.            pointer const p = this->m_holder.allocate(sz);            //We will reuse insert code, so create a dummy input iterator            #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS            ++this->num_alloc;            #endif            this->priv_forward_range_insert_new_allocation               ( boost::movelib::to_raw_pointer(p), sz               , this->priv_raw_begin(), 0, this->priv_dummy_empty_proxy());         }      }   }   void priv_shrink_to_fit(version_2) BOOST_NOEXCEPT_OR_NOTHROW   {      const size_type cp = this->m_holder.capacity();      if(cp){         const size_type sz = this->size();         if(!sz){            if(BOOST_LIKELY(!!this->m_holder.m_start))               this->m_holder.deallocate(this->m_holder.m_start, cp);            this->m_holder.m_start     = pointer();            this->m_holder.m_capacity  = 0;         }         else{            size_type received_size = sz;            pointer reuse(this->m_holder.start());            if(this->m_holder.allocation_command               (shrink_in_place | nothrow_allocation, cp, received_size, reuse)){               this->m_holder.capacity(received_size);               #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS               ++this->num_shrink;               #endif            }         }      }   }   template <class InsertionProxy>   iterator priv_forward_range_insert_no_capacity      (const pointer &pos, const size_type, const InsertionProxy , version_0)   {      alloc_holder_t::on_capacity_overflow();      return iterator(pos);   }   template <class InsertionProxy>   iterator priv_forward_range_insert_no_capacity      (const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, version_1)   {      //Check if we have enough memory or try to expand current memory      const size_type n_pos = pos - this->m_holder.start();      T *const raw_pos = boost::movelib::to_raw_pointer(pos);      const size_type new_cap = this->m_holder.template next_capacity<growth_factor_type>(n);      //Pass the hint so that allocators can take advantage of this.      T * const new_buf = boost::movelib::to_raw_pointer(this->m_holder.allocate(new_cap));      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS      ++this->num_alloc;      #endif      this->priv_forward_range_insert_new_allocation         ( new_buf, new_cap, raw_pos, n, insert_range_proxy);      return iterator(this->m_holder.start() + n_pos);   }   template <class InsertionProxy>   iterator priv_forward_range_insert_no_capacity      (const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, version_2)   {      //Check if we have enough memory or try to expand current memory      T *const raw_pos = boost::movelib::to_raw_pointer(pos);      const size_type n_pos = raw_pos - this->priv_raw_begin();      //There is not enough memory, allocate a new      //buffer or expand the old one.      size_type real_cap = this->m_holder.template next_capacity<growth_factor_type>(n);      pointer reuse(this->m_holder.start());      pointer const ret (this->m_holder.allocation_command         (allocate_new | expand_fwd | expand_bwd, this->m_holder.m_size + n, real_cap, reuse));      //Buffer reallocated      if(reuse){         //Forward expansion, delay insertion         if(this->m_holder.start() == ret){            #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS            ++this->num_expand_fwd;            #endif            this->m_holder.capacity(real_cap);            //Expand forward            this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy);         }         //Backwards (and possibly forward) expansion         else{            #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS            ++this->num_expand_bwd;            #endif            this->priv_forward_range_insert_expand_backwards               (boost::movelib::to_raw_pointer(ret), real_cap, raw_pos, n, insert_range_proxy);         }      }      //New buffer      else{         #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS         ++this->num_alloc;         #endif         this->priv_forward_range_insert_new_allocation            ( boost::movelib::to_raw_pointer(ret), real_cap, raw_pos, n, insert_range_proxy);      }      return iterator(this->m_holder.start() + n_pos);   }   template <class InsertionProxy>   iterator priv_forward_range_insert      (const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy)   {      BOOST_ASSERT(this->m_holder.capacity() >= this->m_holder.m_size);      //Check if we have enough memory or try to expand current memory      const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;      bool same_buffer_start = n <= remaining;      if (!same_buffer_start){         return priv_forward_range_insert_no_capacity(pos, n, insert_range_proxy, alloc_version());      }      else{         //Expand forward         T *const raw_pos = boost::movelib::to_raw_pointer(pos);         const size_type n_pos = raw_pos - this->priv_raw_begin();         this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy);         return iterator(this->m_holder.start() + n_pos);      }   }   template <class InsertionProxy>   iterator priv_forward_range_insert_at_end      (const size_type n, const InsertionProxy insert_range_proxy, version_0)   {      //Check if we have enough memory or try to expand current memory      const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;      if (n > remaining){         //This will trigger an error         alloc_holder_t::on_capacity_overflow();      }      this->priv_forward_range_insert_at_end_expand_forward(n, insert_range_proxy);      return this->end();   }   template <class InsertionProxy, class AllocVersion>   BOOST_CONTAINER_FORCEINLINE iterator priv_forward_range_insert_at_end      (const size_type n, const InsertionProxy insert_range_proxy, AllocVersion)   {      return this->priv_forward_range_insert(this->back_ptr(), n, insert_range_proxy);   }   //Takes the range pointed by [first_pos, last_pos) and shifts it to the right   //by 'shift_count'. 'limit_pos' marks the end of constructed elements.   //   //Precondition: first_pos <= last_pos <= limit_pos   //   //The shift operation might cross limit_pos so elements to moved beyond limit_pos   //are uninitialized_moved with an allocator. Other elements are moved.   //   //The shift operation might left uninitialized elements after limit_pos   //and the number of uninitialized elements is returned by the function.   //   //Old situation:   //       first_pos   last_pos         old_limit   //             |       |                  |   // ____________V_______V__________________V_____________   //|   prefix   | range |     suffix       |raw_mem      ~   //|____________|_______|__________________|_____________~   //   //New situation in Case A (hole_size == 0):   // range is moved through move assignments   //   //       first_pos   last_pos         limit_pos   //             |       |                  |   // ____________V_______V__________________V_____________   //|   prefix'  |       |  | range |suffix'|raw_mem      ~   //|________________+______|___^___|_______|_____________~   //                 |          |   //                 |_>_>_>_>_>^   //   //   //New situation in Case B (hole_size >= 0):   // range is moved through uninitialized moves   //   //       first_pos   last_pos         limit_pos   //             |       |                  |   // ____________V_______V__________________V________________   //|    prefix' |       |                  | [hole] | range |   //|_______________________________________|________|___^___|   //                 |                                   |   //                 |_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_^   //   //New situation in Case C (hole_size == 0):   // range is moved through move assignments and uninitialized moves   //   //       first_pos   last_pos         limit_pos   //             |       |                  |   // ____________V_______V__________________V___   //|   prefix'  |       |              | range |   //|___________________________________|___^___|   //                 |                      |   //                 |_>_>_>_>_>_>_>_>_>_>_>^   size_type priv_insert_ordered_at_shift_range      (size_type first_pos, size_type last_pos, size_type limit_pos, size_type shift_count)   {      BOOST_ASSERT(first_pos <= last_pos);      BOOST_ASSERT(last_pos <= limit_pos);      //      T* const begin_ptr = this->priv_raw_begin();      T* const first_ptr = begin_ptr + first_pos;      T* const last_ptr  = begin_ptr + last_pos;      size_type hole_size = 0;      //Case A:      if((last_pos + shift_count) <= limit_pos){         //All move assigned         boost::container::move_backward(first_ptr, last_ptr, last_ptr + shift_count);      }      //Case B:      else if((first_pos + shift_count) >= limit_pos){         //All uninitialized_moved         ::boost::container::uninitialized_move_alloc            (this->m_holder.alloc(), first_ptr, last_ptr, first_ptr + shift_count);         hole_size = first_pos + shift_count - limit_pos;      }      //Case C:      else{         //Some uninitialized_moved         T* const limit_ptr    = begin_ptr + limit_pos;         T* const boundary_ptr = limit_ptr - shift_count;         ::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), boundary_ptr, last_ptr, limit_ptr);         //The rest is move assigned         boost::container::move_backward(first_ptr, boundary_ptr, limit_ptr);      }      return hole_size;   }   private:   BOOST_CONTAINER_FORCEINLINE T *priv_raw_begin() const   {  return boost::movelib::to_raw_pointer(m_holder.start());  }   BOOST_CONTAINER_FORCEINLINE T* priv_raw_end() const   {  return this->priv_raw_begin() + this->m_holder.m_size;  }   template <class InsertionProxy>   void priv_forward_range_insert_at_end_expand_forward(const size_type n, InsertionProxy insert_range_proxy)   {      T* const old_finish = this->priv_raw_end();      insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n);      this->m_holder.m_size += n;   }   template <class InsertionProxy>   void priv_forward_range_insert_expand_forward(T* const pos, const size_type n, InsertionProxy insert_range_proxy)   {      //n can't be 0, because there is nothing to do in that case      if(BOOST_UNLIKELY(!n)) return;      //There is enough memory      T* const old_finish = this->priv_raw_end();      const size_type elems_after = old_finish - pos;      if (!elems_after){         insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n);         this->m_holder.m_size += n;      }      else if (elems_after >= n){         //New elements can be just copied.         //Move to uninitialized memory last objects         ::boost::container::uninitialized_move_alloc            (this->m_holder.alloc(), old_finish - n, old_finish, old_finish);         this->m_holder.m_size += n;         //Copy previous to last objects to the initialized end         boost::container::move_backward(pos, old_finish - n, old_finish);         //Insert new objects in the pos         insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, n);      }      else {         //The new elements don't fit in the [pos, end()) range.         //Copy old [pos, end()) elements to the uninitialized memory (a gap is created)         ::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), pos, old_finish, pos + n);         BOOST_TRY{            //Copy first new elements in pos (gap is still there)            insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, elems_after);            //Copy to the beginning of the unallocated zone the last new elements (the gap is closed).            insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n - elems_after);            this->m_holder.m_size += n;         }         BOOST_CATCH(...){            boost::container::destroy_alloc_n(this->get_stored_allocator(), pos + n, elems_after);            BOOST_RETHROW         }         BOOST_CATCH_END      }   }   template <class InsertionProxy>   void priv_forward_range_insert_new_allocation      (T* const new_start, size_type new_cap, T* const pos, const size_type n, InsertionProxy insert_range_proxy)   {      //n can be zero, if we want to reallocate!      T *new_finish = new_start;      T *old_finish;      //Anti-exception rollbacks      typename value_traits::ArrayDeallocator new_buffer_deallocator(new_start, this->m_holder.alloc(), new_cap);      typename value_traits::ArrayDestructor  new_values_destroyer(new_start, this->m_holder.alloc(), 0u);      //Initialize with [begin(), pos) old buffer      //the start of the new buffer      T * const old_buffer = this->priv_raw_begin();      if(old_buffer){         new_finish = ::boost::container::uninitialized_move_alloc            (this->m_holder.alloc(), this->priv_raw_begin(), pos, old_finish = new_finish);         new_values_destroyer.increment_size(new_finish - old_finish);      }      //Initialize new objects, starting from previous point      old_finish = new_finish;      insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n);      new_finish += n;      new_values_destroyer.increment_size(new_finish - old_finish);      //Initialize from the rest of the old buffer,      //starting from previous point      if(old_buffer){         new_finish = ::boost::container::uninitialized_move_alloc            (this->m_holder.alloc(), pos, old_buffer + this->m_holder.m_size, new_finish);         //Destroy and deallocate old elements         //If there is allocated memory, destroy and deallocate         if(!value_traits::trivial_dctr_after_move)            boost::container::destroy_alloc_n(this->get_stored_allocator(), old_buffer, this->m_holder.m_size);         this->m_holder.deallocate(this->m_holder.start(), this->m_holder.capacity());      }      this->m_holder.start(new_start);      this->m_holder.m_size = size_type(new_finish - new_start);      this->m_holder.capacity(new_cap);      //All construction successful, disable rollbacks      new_values_destroyer.release();      new_buffer_deallocator.release();   }   template <class InsertionProxy>   void priv_forward_range_insert_expand_backwards         (T* const new_start, const size_type new_capacity,          T* const pos, const size_type n, InsertionProxy insert_range_proxy)   {      //n can be zero to just expand capacity      //Backup old data      T* const old_start  = this->priv_raw_begin();      const size_type old_size = this->m_holder.m_size;      T* const old_finish = old_start + old_size;      //We can have 8 possibilities:      const size_type elemsbefore = static_cast<size_type>(pos - old_start);      const size_type s_before    = static_cast<size_type>(old_start - new_start);      const size_type before_plus_new = elemsbefore + n;      //Update the vector buffer information to a safe state      this->m_holder.start(new_start);      this->m_holder.capacity(new_capacity);      this->m_holder.m_size = 0;      //If anything goes wrong, this object will destroy      //all the old objects to fulfill previous vector state      typename value_traits::ArrayDestructor old_values_destroyer(old_start, this->m_holder.alloc(), old_size);      //Check if s_before is big enough to hold the beginning of old data + new data      if(s_before >= before_plus_new){         //Copy first old values before pos, after that the new objects         T *const new_elem_pos =            ::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), old_start, pos, new_start);         this->m_holder.m_size = elemsbefore;         insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), new_elem_pos, n);         this->m_holder.m_size = before_plus_new;         const size_type new_size = old_size + n;         //Check if s_before is so big that even copying the old data + new data         //there is a gap between the new data and the old data         if(s_before >= new_size){            //Old situation:            // _________________________________________________________            //|            raw_mem                | old_begin | old_end |            //| __________________________________|___________|_________|            //            //New situation:            // _________________________________________________________            //| old_begin |    new   | old_end |         raw_mem        |            //|___________|__________|_________|________________________|            //            //Now initialize the rest of memory with the last old values            if(before_plus_new != new_size){ //Special case to avoid operations in back insertion               ::boost::container::uninitialized_move_alloc                  (this->m_holder.alloc(), pos, old_finish, new_start + before_plus_new);               //All new elements correctly constructed, avoid new element destruction               this->m_holder.m_size = new_size;            }            //Old values destroyed automatically with "old_values_destroyer"            //when "old_values_destroyer" goes out of scope unless the have trivial            //destructor after move.            if(value_traits::trivial_dctr_after_move)               old_values_destroyer.release();         }         //s_before is so big that divides old_end         else{            //Old situation:            // __________________________________________________            //|            raw_mem         | old_begin | old_end |            //| ___________________________|___________|_________|            //            //New situation:            // __________________________________________________            //| old_begin |   new    | old_end |  raw_mem        |            //|___________|__________|_________|_________________|            //            //Now initialize the rest of memory with the last old values            //All new elements correctly constructed, avoid new element destruction            const size_type raw_gap = s_before - before_plus_new;            if(!value_traits::trivial_dctr){               //Now initialize the rest of s_before memory with the               //first of elements after new values               ::boost::container::uninitialized_move_alloc_n                  (this->m_holder.alloc(), pos, raw_gap, new_start + before_plus_new);               //Now we have a contiguous buffer so program trailing element destruction               //and update size to the final size.               old_values_destroyer.shrink_forward(new_size-s_before);               this->m_holder.m_size = new_size;               //Now move remaining last objects in the old buffer begin               T * const remaining_pos = pos + raw_gap;               if(remaining_pos != old_start){  //Make sure data has to be moved                  ::boost::container::move(remaining_pos, old_finish, old_start);               }               //Once moved, avoid calling the destructors if trivial after move               if(value_traits::trivial_dctr_after_move){                  old_values_destroyer.release();               }            }            else{ //If trivial destructor, we can uninitialized copy + copy in a single uninitialized copy               ::boost::container::uninitialized_move_alloc_n                  (this->m_holder.alloc(), pos, static_cast<size_type>(old_finish - pos), new_start + before_plus_new);               this->m_holder.m_size = new_size;               old_values_destroyer.release();            }         }      }      else{         //Check if we have to do the insertion in two phases         //since maybe s_before is not big enough and         //the buffer was expanded both sides         //         //Old situation:         // _________________________________________________         //| raw_mem | old_begin + old_end |  raw_mem        |         //|_________|_____________________|_________________|         //         //New situation with do_after:         // _________________________________________________         //|     old_begin + new + old_end     |  raw_mem    |         //|___________________________________|_____________|         //         //New without do_after:         // _________________________________________________         //| old_begin + new + old_end  |  raw_mem           |         //|____________________________|____________________|         //         const bool do_after = n > s_before;         //Now we can have two situations: the raw_mem of the         //beginning divides the old_begin, or the new elements:         if (s_before <= elemsbefore) {            //The raw memory divides the old_begin group:            //            //If we need two phase construction (do_after)            //new group is divided in new = new_beg + new_end groups            //In this phase only new_beg will be inserted            //            //Old situation:            // _________________________________________________            //| raw_mem | old_begin | old_end |  raw_mem        |            //|_________|___________|_________|_________________|            //            //New situation with do_after(1):            //This is not definitive situation, the second phase            //will include            // _________________________________________________            //| old_begin | new_beg | old_end |  raw_mem        |            //|___________|_________|_________|_________________|            //            //New situation without do_after:            // _________________________________________________            //| old_begin | new | old_end |  raw_mem            |            //|___________|_____|_________|_____________________|            //            //Copy the first part of old_begin to raw_mem            ::boost::container::uninitialized_move_alloc_n               (this->m_holder.alloc(), old_start, s_before, new_start);            //The buffer is all constructed until old_end,            //so program trailing destruction and assign final size            //if !do_after, s_before+n otherwise.            size_type new_1st_range;            if(do_after){               new_1st_range = s_before;               //release destroyer and update size               old_values_destroyer.release();            }            else{               new_1st_range = n;               if(value_traits::trivial_dctr_after_move)                  old_values_destroyer.release();               else{                  old_values_destroyer.shrink_forward(old_size - (s_before - n));               }            }            this->m_holder.m_size = old_size + new_1st_range;            //Now copy the second part of old_begin overwriting itself            T *const next = ::boost::container::move(old_start + s_before, pos, old_start);            //Now copy the new_beg elements            insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), next, new_1st_range);            //If there is no after work and the last old part needs to be moved to front, do it            if(!do_after && (n != s_before)){               //Now displace old_end elements               ::boost::container::move(pos, old_finish, next + new_1st_range);            }         }         else {            //If we have to expand both sides,            //we will play if the first new values so            //calculate the upper bound of new values            //The raw memory divides the new elements            //            //If we need two phase construction (do_after)            //new group is divided in new = new_beg + new_end groups            //In this phase only new_beg will be inserted            //            //Old situation:            // _______________________________________________________            //|   raw_mem     | old_begin | old_end |  raw_mem        |            //|_______________|___________|_________|_________________|            //            //New situation with do_after():            // ____________________________________________________            //| old_begin |    new_beg    | old_end |  raw_mem     |            //|___________|_______________|_________|______________|            //            //New situation without do_after:            // ______________________________________________________            //| old_begin | new | old_end |  raw_mem                 |            //|___________|_____|_________|__________________________|            //            //First copy whole old_begin and part of new to raw_mem            T * const new_pos = ::boost::container::uninitialized_move_alloc               (this->m_holder.alloc(), old_start, pos, new_start);            this->m_holder.m_size = elemsbefore;            const size_type mid_n = s_before - elemsbefore;            insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), new_pos, mid_n);            //The buffer is all constructed until old_end,            //release destroyer            this->m_holder.m_size = old_size + s_before;            old_values_destroyer.release();            if(do_after){               //Copy new_beg part               insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), old_start, elemsbefore);            }            else{               //Copy all new elements               const size_type rest_new = n - mid_n;               insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), old_start, rest_new);               T* const move_start = old_start + rest_new;               //Displace old_end, but make sure data has to be moved               T* const move_end = move_start != pos ? ::boost::container::move(pos, old_finish, move_start)                                                     : old_finish;               //Destroy remaining moved elements from old_end except if they               //have trivial destructor after being moved               size_type n_destroy = s_before - n;               if(!value_traits::trivial_dctr_after_move)                  boost::container::destroy_alloc_n(this->get_stored_allocator(), move_end, n_destroy);               this->m_holder.m_size -= n_destroy;            }         }         //This is only executed if two phase construction is needed         if(do_after){            //The raw memory divides the new elements            //            //Old situation:            // ______________________________________________________            //|   raw_mem    | old_begin |  old_end   |  raw_mem     |            //|______________|___________|____________|______________|            //            //New situation with do_after(1):            // _______________________________________________________            //| old_begin   +   new_beg  | new_end |old_end | raw_mem |            //|__________________________|_________|________|_________|            //            //New situation with do_after(2):            // ______________________________________________________            //| old_begin      +       new            | old_end |raw |            //|_______________________________________|_________|____|            //            const size_type n_after    = n - s_before;            const size_type elemsafter = old_size - elemsbefore;            //We can have two situations:            if (elemsafter >= n_after){               //The raw_mem from end will divide displaced old_end               //               //Old situation:               // ______________________________________________________               //|   raw_mem    | old_begin |  old_end   |  raw_mem     |               //|______________|___________|____________|______________|               //               //New situation with do_after(1):               // _______________________________________________________               //| old_begin   +   new_beg  | new_end |old_end | raw_mem |               //|__________________________|_________|________|_________|               //               //First copy the part of old_end raw_mem               T* finish_n = old_finish - n_after;               ::boost::container::uninitialized_move_alloc                  (this->m_holder.alloc(), finish_n, old_finish, old_finish);               this->m_holder.m_size += n_after;               //Displace the rest of old_end to the new position               boost::container::move_backward(pos, finish_n, old_finish);               //Now overwrite with new_end               //The new_end part is [first + (n - n_after), last)               insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, n_after);            }            else {               //The raw_mem from end will divide new_end part               //               //Old situation:               // _____________________________________________________________               //|   raw_mem    | old_begin |  old_end   |  raw_mem            |               //|______________|___________|____________|_____________________|               //               //New situation with do_after(2):               // _____________________________________________________________               //| old_begin   +   new_beg  |     new_end   |old_end | raw_mem |               //|__________________________|_______________|________|_________|               //               const size_type mid_last_dist = n_after - elemsafter;               //First initialize data in raw memory               //Copy to the old_end part to the uninitialized zone leaving a gap.               ::boost::container::uninitialized_move_alloc                  (this->m_holder.alloc(), pos, old_finish, old_finish + mid_last_dist);               typename value_traits::ArrayDestructor old_end_destroyer                  (old_finish + mid_last_dist, this->m_holder.alloc(), old_finish - pos);               //Copy the first part to the already constructed old_end zone               insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, elemsafter);               //Copy the rest to the uninitialized zone filling the gap               insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, mid_last_dist);               this->m_holder.m_size += n_after;               old_end_destroyer.release();            }         }      }   }   void priv_throw_if_out_of_range(size_type n) const   {      //If n is out of range, throw an out_of_range exception      if (n >= this->size()){         throw_out_of_range("vector::at out of range");      }   }   BOOST_CONTAINER_FORCEINLINE bool priv_in_range(const_iterator pos) const   {      return (this->begin() <= pos) && (pos < this->end());   }   BOOST_CONTAINER_FORCEINLINE bool priv_in_range_or_end(const_iterator pos) const   {      return (this->begin() <= pos) && (pos <= this->end());   }   #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS   public:   unsigned int num_expand_fwd;   unsigned int num_expand_bwd;   unsigned int num_shrink;   unsigned int num_alloc;   void reset_alloc_stats()   {  num_expand_fwd = num_expand_bwd = num_alloc = 0, num_shrink = 0;   }   #endif   #endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED};#ifndef BOOST_CONTAINER_NO_CXX17_CTADtemplate <typename InputIterator>vector(InputIterator, InputIterator) ->   vector<typename iterator_traits<InputIterator>::value_type>;template <typename InputIterator, typename Allocator>vector(InputIterator, InputIterator, Allocator const&) ->   vector<typename iterator_traits<InputIterator>::value_type, Allocator>;#endif}} //namespace boost::container#ifndef BOOST_CONTAINER_DOXYGEN_INVOKEDnamespace boost {//!has_trivial_destructor_after_move<> == true_type//!specialization for optimizationstemplate <class T, class Allocator, class Options>struct has_trivial_destructor_after_move<boost::container::vector<T, Allocator, Options> >{   typedef typename boost::container::vector<T, Allocator, Options>::allocator_type allocator_type;   typedef typename ::boost::container::allocator_traits<allocator_type>::pointer pointer;   static const bool value = ::boost::has_trivial_destructor_after_move<allocator_type>::value &&                             ::boost::has_trivial_destructor_after_move<pointer>::value;};}#endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED#include <boost/container/detail/config_end.hpp>#endif //   #ifndef  BOOST_CONTAINER_CONTAINER_VECTOR_HPP
 |