| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809 | //  Copyright John Maddock 2008.//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)//// Wrapper that works with mpfr_class defined in gmpfrxx.h// See http://math.berkeley.edu/~wilken/code/gmpfrxx/// Also requires the gmp and mpfr libraries.//#ifndef BOOST_MATH_E_FLOAT_BINDINGS_HPP#define BOOST_MATH_E_FLOAT_BINDINGS_HPP#include <boost/config.hpp>#include <e_float/e_float.h>#include <functions/functions.h>#include <boost/math/tools/precision.hpp>#include <boost/math/tools/real_cast.hpp>#include <boost/math/policies/policy.hpp>#include <boost/math/distributions/fwd.hpp>#include <boost/math/special_functions/math_fwd.hpp>#include <boost/math/special_functions/fpclassify.hpp>#include <boost/math/bindings/detail/big_digamma.hpp>#include <boost/math/bindings/detail/big_lanczos.hpp>#include <boost/lexical_cast.hpp>namespace boost{ namespace math{ namespace ef{class e_float{public:   // Constructors:   e_float() {}   e_float(const ::e_float& c) : m_value(c){}   e_float(char c)   {      m_value = ::e_float(c);   }#ifndef BOOST_NO_INTRINSIC_WCHAR_T   e_float(wchar_t c)   {      m_value = ::e_float(c);   }#endif   e_float(unsigned char c)   {      m_value = ::e_float(c);   }   e_float(signed char c)   {      m_value = ::e_float(c);   }   e_float(unsigned short c)   {      m_value = ::e_float(c);   }   e_float(short c)   {      m_value = ::e_float(c);   }   e_float(unsigned int c)   {      m_value = ::e_float(c);   }   e_float(int c)   {      m_value = ::e_float(c);   }   e_float(unsigned long c)   {      m_value = ::e_float((UINT64)c);   }   e_float(long c)   {      m_value = ::e_float((INT64)c);   }#ifdef BOOST_HAS_LONG_LONG   e_float(boost::ulong_long_type c)   {      m_value = ::e_float(c);   }   e_float(boost::long_long_type c)   {      m_value = ::e_float(c);   }#endif   e_float(float c)   {      assign_large_real(c);   }   e_float(double c)   {      assign_large_real(c);   }   e_float(long double c)   {      assign_large_real(c);   }   // Assignment:   e_float& operator=(char c) { m_value = ::e_float(c); return *this; }   e_float& operator=(unsigned char c) { m_value = ::e_float(c); return *this; }   e_float& operator=(signed char c) { m_value = ::e_float(c); return *this; }#ifndef BOOST_NO_INTRINSIC_WCHAR_T   e_float& operator=(wchar_t c) { m_value = ::e_float(c); return *this; }#endif   e_float& operator=(short c) { m_value = ::e_float(c); return *this; }   e_float& operator=(unsigned short c) { m_value = ::e_float(c); return *this; }   e_float& operator=(int c) { m_value = ::e_float(c); return *this; }   e_float& operator=(unsigned int c) { m_value = ::e_float(c); return *this; }   e_float& operator=(long c) { m_value = ::e_float((INT64)c); return *this; }   e_float& operator=(unsigned long c) { m_value = ::e_float((UINT64)c); return *this; }#ifdef BOOST_HAS_LONG_LONG   e_float& operator=(boost::long_long_type c) { m_value = ::e_float(c); return *this; }   e_float& operator=(boost::ulong_long_type c) { m_value = ::e_float(c); return *this; }#endif   e_float& operator=(float c) { assign_large_real(c); return *this; }   e_float& operator=(double c) { assign_large_real(c); return *this; }   e_float& operator=(long double c) { assign_large_real(c); return *this; }   // Access:   ::e_float& value(){ return m_value; }   ::e_float const& value()const{ return m_value; }   // Member arithmetic:   e_float& operator+=(const e_float& other)   { m_value += other.value(); return *this; }   e_float& operator-=(const e_float& other)   { m_value -= other.value(); return *this; }   e_float& operator*=(const e_float& other)   { m_value *= other.value(); return *this; }   e_float& operator/=(const e_float& other)   { m_value /= other.value(); return *this; }   e_float operator-()const   { return -m_value; }   e_float const& operator+()const   { return *this; }private:   ::e_float m_value;   template <class V>   void assign_large_real(const V& a)   {      using std::frexp;      using std::ldexp;      using std::floor;      if (a == 0) {         m_value = ::ef::zero();         return;      }      if (a == 1) {         m_value = ::ef::one();         return;      }      if ((boost::math::isinf)(a))      {         m_value = a > 0 ? m_value.my_value_inf() : -m_value.my_value_inf();         return;      }      if((boost::math::isnan)(a))      {         m_value = m_value.my_value_nan();         return;      }      int e;      long double f, term;      ::e_float t;      m_value = ::ef::zero();      f = frexp(a, &e);      ::e_float shift = ::ef::pow2(30);      while(f)      {         // extract 30 bits from f:         f = ldexp(f, 30);         term = floor(f);         e -= 30;         m_value *= shift;         m_value += ::e_float(static_cast<INT64>(term));         f -= term;      }      m_value *= ::ef::pow2(e);   }};// Non-member arithmetic:inline e_float operator+(const e_float& a, const e_float& b){   e_float result(a);   result += b;   return result;}inline e_float operator-(const e_float& a, const e_float& b){   e_float result(a);   result -= b;   return result;}inline e_float operator*(const e_float& a, const e_float& b){   e_float result(a);   result *= b;   return result;}inline e_float operator/(const e_float& a, const e_float& b){   e_float result(a);   result /= b;   return result;}// Comparison:inline bool operator == (const e_float& a, const e_float& b){ return a.value() == b.value() ? true : false; }inline bool operator != (const e_float& a, const e_float& b){ return a.value() != b.value() ? true : false;}inline bool operator < (const e_float& a, const e_float& b){ return a.value() < b.value() ? true : false; }inline bool operator <= (const e_float& a, const e_float& b){ return a.value() <= b.value() ? true : false; }inline bool operator > (const e_float& a, const e_float& b){ return a.value() > b.value() ? true : false; }inline bool operator >= (const e_float& a, const e_float& b){ return a.value() >= b.value() ? true : false; }std::istream& operator >> (std::istream& is, e_float& f){   return is >> f.value();}std::ostream& operator << (std::ostream& os, const e_float& f){   return os << f.value();}inline e_float fabs(const e_float& v){   return ::ef::fabs(v.value());}inline e_float abs(const e_float& v){   return ::ef::fabs(v.value());}inline e_float floor(const e_float& v){   return ::ef::floor(v.value());}inline e_float ceil(const e_float& v){   return ::ef::ceil(v.value());}inline e_float pow(const e_float& v, const e_float& w){   return ::ef::pow(v.value(), w.value());}inline e_float pow(const e_float& v, int i){   return ::ef::pow(v.value(), ::e_float(i));}inline e_float exp(const e_float& v){   return ::ef::exp(v.value());}inline e_float log(const e_float& v){   return ::ef::log(v.value());}inline e_float sqrt(const e_float& v){   return ::ef::sqrt(v.value());}inline e_float sin(const e_float& v){   return ::ef::sin(v.value());}inline e_float cos(const e_float& v){   return ::ef::cos(v.value());}inline e_float tan(const e_float& v){   return ::ef::tan(v.value());}inline e_float acos(const e_float& v){   return ::ef::acos(v.value());}inline e_float asin(const e_float& v){   return ::ef::asin(v.value());}inline e_float atan(const e_float& v){   return ::ef::atan(v.value());}inline e_float atan2(const e_float& v, const e_float& u){   return ::ef::atan2(v.value(), u.value());}inline e_float ldexp(const e_float& v, int e){   return v.value() * ::ef::pow2(e);}inline e_float frexp(const e_float& v, int* expon){   double d;   INT64 i;   v.value().extract_parts(d, i);   *expon = static_cast<int>(i);   return v.value() * ::ef::pow2(-i);}inline e_float sinh (const e_float& x){   return ::ef::sinh(x.value());}inline e_float cosh (const e_float& x){   return ::ef::cosh(x.value());}inline e_float tanh (const e_float& x){   return ::ef::tanh(x.value());}inline e_float asinh (const e_float& x){   return ::ef::asinh(x.value());}inline e_float acosh (const e_float& x){   return ::ef::acosh(x.value());}inline e_float atanh (const e_float& x){   return ::ef::atanh(x.value());}e_float fmod(const e_float& v1, const e_float& v2){   e_float n;   if(v1 < 0)      n = ceil(v1 / v2);   else      n = floor(v1 / v2);   return v1 - n * v2;}} namespace detail{template <>inline int fpclassify_imp< boost::math::ef::e_float> BOOST_NO_MACRO_EXPAND(boost::math::ef::e_float x, const generic_tag<true>&){   if(x.value().isnan())      return FP_NAN;   if(x.value().isinf())      return FP_INFINITE;   if(x == 0)      return FP_ZERO;   return FP_NORMAL;}} namespace ef{template <class Policy>inline int itrunc(const e_float& v, const Policy& pol){   BOOST_MATH_STD_USING   e_float r = boost::math::trunc(v, pol);   if(fabs(r) > (std::numeric_limits<int>::max)())      return static_cast<int>(policies::raise_rounding_error("boost::math::itrunc<%1%>(%1%)", 0, 0, v, pol));   return static_cast<int>(r.value().extract_int64());}template <class Policy>inline long ltrunc(const e_float& v, const Policy& pol){   BOOST_MATH_STD_USING   e_float r = boost::math::trunc(v, pol);   if(fabs(r) > (std::numeric_limits<long>::max)())      return static_cast<long>(policies::raise_rounding_error("boost::math::ltrunc<%1%>(%1%)", 0, 0L, v, pol));   return static_cast<long>(r.value().extract_int64());}#ifdef BOOST_HAS_LONG_LONGtemplate <class Policy>inline boost::long_long_type lltrunc(const e_float& v, const Policy& pol){   BOOST_MATH_STD_USING   e_float r = boost::math::trunc(v, pol);   if(fabs(r) > (std::numeric_limits<boost::long_long_type>::max)())      return static_cast<boost::long_long_type>(policies::raise_rounding_error("boost::math::lltrunc<%1%>(%1%)", 0, v, 0LL, pol).value().extract_int64());   return static_cast<boost::long_long_type>(r.value().extract_int64());}#endiftemplate <class Policy>inline int iround(const e_float& v, const Policy& pol){   BOOST_MATH_STD_USING   e_float r = boost::math::round(v, pol);   if(fabs(r) > (std::numeric_limits<int>::max)())      return static_cast<int>(policies::raise_rounding_error("boost::math::iround<%1%>(%1%)", 0, v, 0, pol).value().extract_int64());   return static_cast<int>(r.value().extract_int64());}template <class Policy>inline long lround(const e_float& v, const Policy& pol){   BOOST_MATH_STD_USING   e_float r = boost::math::round(v, pol);   if(fabs(r) > (std::numeric_limits<long>::max)())      return static_cast<long int>(policies::raise_rounding_error("boost::math::lround<%1%>(%1%)", 0, v, 0L, pol).value().extract_int64());   return static_cast<long int>(r.value().extract_int64());}#ifdef BOOST_HAS_LONG_LONGtemplate <class Policy>inline boost::long_long_type llround(const e_float& v, const Policy& pol){   BOOST_MATH_STD_USING   e_float r = boost::math::round(v, pol);   if(fabs(r) > (std::numeric_limits<boost::long_long_type>::max)())      return static_cast<boost::long_long_type>(policies::raise_rounding_error("boost::math::llround<%1%>(%1%)", 0, v, 0LL, pol).value().extract_int64());   return static_cast<boost::long_long_type>(r.value().extract_int64());}#endif}}}namespace std{   template<>   class numeric_limits< ::boost::math::ef::e_float> : public numeric_limits< ::e_float>   {   public:      static const ::boost::math::ef::e_float (min) (void)      {         return (numeric_limits< ::e_float>::min)();      }      static const ::boost::math::ef::e_float (max) (void)      {         return (numeric_limits< ::e_float>::max)();      }      static const ::boost::math::ef::e_float epsilon (void)      {         return (numeric_limits< ::e_float>::epsilon)();      }      static const ::boost::math::ef::e_float round_error(void)      {         return (numeric_limits< ::e_float>::round_error)();      }      static const ::boost::math::ef::e_float infinity (void)      {         return (numeric_limits< ::e_float>::infinity)();      }      static const ::boost::math::ef::e_float quiet_NaN (void)      {         return (numeric_limits< ::e_float>::quiet_NaN)();      }      //      // e_float's supplied digits member is wrong       // - it should be same the same as digits 10      // - given that radix is 10.      //      static const int digits = digits10;   };} // namespace stdnamespace boost{ namespace math{namespace policies{template <class Policy>struct precision< ::boost::math::ef::e_float, Policy>{   typedef typename Policy::precision_type precision_type;   typedef digits2<((::std::numeric_limits< ::boost::math::ef::e_float>::digits10 + 1) * 1000L) / 301L> digits_2;   typedef typename mpl::if_c<      ((digits_2::value <= precision_type::value)       || (Policy::precision_type::value <= 0)),      // Default case, full precision for RealType:      digits_2,      // User customised precision:      precision_type   >::type type;};}namespace tools{template <>inline int digits< ::boost::math::ef::e_float>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC( ::boost::math::ef::e_float)){   return ((::std::numeric_limits< ::boost::math::ef::e_float>::digits10 + 1) * 1000L) / 301L;}template <>inline  ::boost::math::ef::e_float root_epsilon< ::boost::math::ef::e_float>(){   return detail::root_epsilon_imp(static_cast< ::boost::math::ef::e_float const*>(0), boost::integral_constant<int, 0>());}template <>inline  ::boost::math::ef::e_float forth_root_epsilon< ::boost::math::ef::e_float>(){   return detail::forth_root_epsilon_imp(static_cast< ::boost::math::ef::e_float const*>(0), boost::integral_constant<int, 0>());}}namespace lanczos{template<class Policy>struct lanczos<boost::math::ef::e_float, Policy>{   typedef typename mpl::if_c<      std::numeric_limits< ::e_float>::digits10 < 22,      lanczos13UDT,      typename mpl::if_c<         std::numeric_limits< ::e_float>::digits10 < 36,         lanczos22UDT,         typename mpl::if_c<            std::numeric_limits< ::e_float>::digits10 < 50,            lanczos31UDT,            typename mpl::if_c<               std::numeric_limits< ::e_float>::digits10 < 110,               lanczos61UDT,               undefined_lanczos            >::type         >::type      >::type   >::type type;};} // namespace lanczostemplate <class Policy>inline boost::math::ef::e_float skewness(const extreme_value_distribution<boost::math::ef::e_float, Policy>& /*dist*/){   //   // This is 12 * sqrt(6) * zeta(3) / pi^3:   // See http://mathworld.wolfram.com/ExtremeValueDistribution.html   //   return boost::lexical_cast<boost::math::ef::e_float>("1.1395470994046486574927930193898461120875997958366");}template <class Policy>inline boost::math::ef::e_float skewness(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/){  // using namespace boost::math::constants;  return boost::lexical_cast<boost::math::ef::e_float>("0.63111065781893713819189935154422777984404221106391");  // Computed using NTL at 150 bit, about 50 decimal digits.  // return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>();}template <class Policy>inline boost::math::ef::e_float kurtosis(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/){  // using namespace boost::math::constants;  return boost::lexical_cast<boost::math::ef::e_float>("3.2450893006876380628486604106197544154170667057995");  // Computed using NTL at 150 bit, about 50 decimal digits.  // return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /  // (four_minus_pi<RealType>() * four_minus_pi<RealType>());}template <class Policy>inline boost::math::ef::e_float kurtosis_excess(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/){  //using namespace boost::math::constants;  // Computed using NTL at 150 bit, about 50 decimal digits.  return boost::lexical_cast<boost::math::ef::e_float>("0.2450893006876380628486604106197544154170667057995");  // return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /  //   (four_minus_pi<RealType>() * four_minus_pi<RealType>());} // kurtosisnamespace detail{//// Version of Digamma accurate to ~100 decimal digits.//template <class Policy>boost::math::ef::e_float digamma_imp(boost::math::ef::e_float x, const boost::integral_constant<int, 0>* , const Policy& pol){   //   // This handles reflection of negative arguments, and all our   // eboost::math::ef::e_floator handling, then forwards to the T-specific approximation.   //   BOOST_MATH_STD_USING // ADL of std functions.   boost::math::ef::e_float result = 0;   //   // Check for negative arguments and use reflection:   //   if(x < 0)   {      // Reflect:      x = 1 - x;      // Argument reduction for tan:      boost::math::ef::e_float remainder = x - floor(x);      // Shift to negative if > 0.5:      if(remainder > 0.5)      {         remainder -= 1;      }      //      // check for evaluation at a negative pole:      //      if(remainder == 0)      {         return policies::raise_pole_error<boost::math::ef::e_float>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol);      }      result = constants::pi<boost::math::ef::e_float>() / tan(constants::pi<boost::math::ef::e_float>() * remainder);   }   result += big_digamma(x);   return result;}boost::math::ef::e_float bessel_i0(boost::math::ef::e_float x){    static const boost::math::ef::e_float P1[] = {        boost::lexical_cast<boost::math::ef::e_float>("-2.2335582639474375249e+15"),        boost::lexical_cast<boost::math::ef::e_float>("-5.5050369673018427753e+14"),        boost::lexical_cast<boost::math::ef::e_float>("-3.2940087627407749166e+13"),        boost::lexical_cast<boost::math::ef::e_float>("-8.4925101247114157499e+11"),        boost::lexical_cast<boost::math::ef::e_float>("-1.1912746104985237192e+10"),        boost::lexical_cast<boost::math::ef::e_float>("-1.0313066708737980747e+08"),        boost::lexical_cast<boost::math::ef::e_float>("-5.9545626019847898221e+05"),        boost::lexical_cast<boost::math::ef::e_float>("-2.4125195876041896775e+03"),        boost::lexical_cast<boost::math::ef::e_float>("-7.0935347449210549190e+00"),        boost::lexical_cast<boost::math::ef::e_float>("-1.5453977791786851041e-02"),        boost::lexical_cast<boost::math::ef::e_float>("-2.5172644670688975051e-05"),        boost::lexical_cast<boost::math::ef::e_float>("-3.0517226450451067446e-08"),        boost::lexical_cast<boost::math::ef::e_float>("-2.6843448573468483278e-11"),        boost::lexical_cast<boost::math::ef::e_float>("-1.5982226675653184646e-14"),        boost::lexical_cast<boost::math::ef::e_float>("-5.2487866627945699800e-18"),    };    static const boost::math::ef::e_float Q1[] = {        boost::lexical_cast<boost::math::ef::e_float>("-2.2335582639474375245e+15"),        boost::lexical_cast<boost::math::ef::e_float>("7.8858692566751002988e+12"),        boost::lexical_cast<boost::math::ef::e_float>("-1.2207067397808979846e+10"),        boost::lexical_cast<boost::math::ef::e_float>("1.0377081058062166144e+07"),        boost::lexical_cast<boost::math::ef::e_float>("-4.8527560179962773045e+03"),        boost::lexical_cast<boost::math::ef::e_float>("1.0"),    };    static const boost::math::ef::e_float P2[] = {        boost::lexical_cast<boost::math::ef::e_float>("-2.2210262233306573296e-04"),        boost::lexical_cast<boost::math::ef::e_float>("1.3067392038106924055e-02"),        boost::lexical_cast<boost::math::ef::e_float>("-4.4700805721174453923e-01"),        boost::lexical_cast<boost::math::ef::e_float>("5.5674518371240761397e+00"),        boost::lexical_cast<boost::math::ef::e_float>("-2.3517945679239481621e+01"),        boost::lexical_cast<boost::math::ef::e_float>("3.1611322818701131207e+01"),        boost::lexical_cast<boost::math::ef::e_float>("-9.6090021968656180000e+00"),    };    static const boost::math::ef::e_float Q2[] = {        boost::lexical_cast<boost::math::ef::e_float>("-5.5194330231005480228e-04"),        boost::lexical_cast<boost::math::ef::e_float>("3.2547697594819615062e-02"),        boost::lexical_cast<boost::math::ef::e_float>("-1.1151759188741312645e+00"),        boost::lexical_cast<boost::math::ef::e_float>("1.3982595353892851542e+01"),        boost::lexical_cast<boost::math::ef::e_float>("-6.0228002066743340583e+01"),        boost::lexical_cast<boost::math::ef::e_float>("8.5539563258012929600e+01"),        boost::lexical_cast<boost::math::ef::e_float>("-3.1446690275135491500e+01"),        boost::lexical_cast<boost::math::ef::e_float>("1.0"),    };    boost::math::ef::e_float value, factor, r;    BOOST_MATH_STD_USING    using namespace boost::math::tools;    if (x < 0)    {        x = -x;                         // even function    }    if (x == 0)    {        return static_cast<boost::math::ef::e_float>(1);    }    if (x <= 15)                        // x in (0, 15]    {        boost::math::ef::e_float y = x * x;        value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);    }    else                                // x in (15, \infty)    {        boost::math::ef::e_float y = 1 / x - boost::math::ef::e_float(1) / 15;        r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);        factor = exp(x) / sqrt(x);        value = factor * r;    }    return value;}boost::math::ef::e_float bessel_i1(boost::math::ef::e_float x){    static const boost::math::ef::e_float P1[] = {        lexical_cast<boost::math::ef::e_float>("-1.4577180278143463643e+15"),        lexical_cast<boost::math::ef::e_float>("-1.7732037840791591320e+14"),        lexical_cast<boost::math::ef::e_float>("-6.9876779648010090070e+12"),        lexical_cast<boost::math::ef::e_float>("-1.3357437682275493024e+11"),        lexical_cast<boost::math::ef::e_float>("-1.4828267606612366099e+09"),        lexical_cast<boost::math::ef::e_float>("-1.0588550724769347106e+07"),        lexical_cast<boost::math::ef::e_float>("-5.1894091982308017540e+04"),        lexical_cast<boost::math::ef::e_float>("-1.8225946631657315931e+02"),        lexical_cast<boost::math::ef::e_float>("-4.7207090827310162436e-01"),        lexical_cast<boost::math::ef::e_float>("-9.1746443287817501309e-04"),        lexical_cast<boost::math::ef::e_float>("-1.3466829827635152875e-06"),        lexical_cast<boost::math::ef::e_float>("-1.4831904935994647675e-09"),        lexical_cast<boost::math::ef::e_float>("-1.1928788903603238754e-12"),        lexical_cast<boost::math::ef::e_float>("-6.5245515583151902910e-16"),        lexical_cast<boost::math::ef::e_float>("-1.9705291802535139930e-19"),    };    static const boost::math::ef::e_float Q1[] = {        lexical_cast<boost::math::ef::e_float>("-2.9154360556286927285e+15"),        lexical_cast<boost::math::ef::e_float>("9.7887501377547640438e+12"),        lexical_cast<boost::math::ef::e_float>("-1.4386907088588283434e+10"),        lexical_cast<boost::math::ef::e_float>("1.1594225856856884006e+07"),        lexical_cast<boost::math::ef::e_float>("-5.1326864679904189920e+03"),        lexical_cast<boost::math::ef::e_float>("1.0"),    };    static const boost::math::ef::e_float P2[] = {        lexical_cast<boost::math::ef::e_float>("1.4582087408985668208e-05"),        lexical_cast<boost::math::ef::e_float>("-8.9359825138577646443e-04"),        lexical_cast<boost::math::ef::e_float>("2.9204895411257790122e-02"),        lexical_cast<boost::math::ef::e_float>("-3.4198728018058047439e-01"),        lexical_cast<boost::math::ef::e_float>("1.3960118277609544334e+00"),        lexical_cast<boost::math::ef::e_float>("-1.9746376087200685843e+00"),        lexical_cast<boost::math::ef::e_float>("8.5591872901933459000e-01"),        lexical_cast<boost::math::ef::e_float>("-6.0437159056137599999e-02"),    };    static const boost::math::ef::e_float Q2[] = {        lexical_cast<boost::math::ef::e_float>("3.7510433111922824643e-05"),        lexical_cast<boost::math::ef::e_float>("-2.2835624489492512649e-03"),        lexical_cast<boost::math::ef::e_float>("7.4212010813186530069e-02"),        lexical_cast<boost::math::ef::e_float>("-8.5017476463217924408e-01"),        lexical_cast<boost::math::ef::e_float>("3.2593714889036996297e+00"),        lexical_cast<boost::math::ef::e_float>("-3.8806586721556593450e+00"),        lexical_cast<boost::math::ef::e_float>("1.0"),    };    boost::math::ef::e_float value, factor, r, w;    BOOST_MATH_STD_USING    using namespace boost::math::tools;    w = abs(x);    if (x == 0)    {        return static_cast<boost::math::ef::e_float>(0);    }    if (w <= 15)                        // w in (0, 15]    {        boost::math::ef::e_float y = x * x;        r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);        factor = w;        value = factor * r;    }    else                                // w in (15, \infty)    {        boost::math::ef::e_float y = 1 / w - boost::math::ef::e_float(1) / 15;        r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);        factor = exp(w) / sqrt(w);        value = factor * r;    }    if (x < 0)    {        value *= -value;                 // odd function    }    return value;}} // namespace detail}}#endif // BOOST_MATH_E_FLOAT_BINDINGS_HPP
 |