| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898 | //  Copyright John Maddock 2008.//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)//// Wrapper that works with mpfr::mpreal defined in gmpfrxx.h// See http://math.berkeley.edu/~wilken/code/gmpfrxx/// Also requires the gmp and mpfr libraries.//#ifndef BOOST_MATH_MPREAL_BINDINGS_HPP#define BOOST_MATH_MPREAL_BINDINGS_HPP#include <boost/config.hpp>#include <boost/lexical_cast.hpp>#ifdef BOOST_MSVC//// We get a lot of warnings from the gmp, mpfr and gmpfrxx headers, // disable them here, so we only see warnings from *our* code://#pragma warning(push)#pragma warning(disable: 4127 4800 4512)#endif#include <mpreal.h>#ifdef BOOST_MSVC#pragma warning(pop)#endif#include <boost/math/tools/precision.hpp>#include <boost/math/tools/real_cast.hpp>#include <boost/math/policies/policy.hpp>#include <boost/math/distributions/fwd.hpp>#include <boost/math/special_functions/math_fwd.hpp>#include <boost/math/bindings/detail/big_digamma.hpp>#include <boost/math/bindings/detail/big_lanczos.hpp>namespace mpfr{template <class T>inline mpreal operator + (const mpreal& r, const T& t){ return r + mpreal(t); }template <class T>inline mpreal operator - (const mpreal& r, const T& t){ return r - mpreal(t); }template <class T>inline mpreal operator * (const mpreal& r, const T& t){ return r * mpreal(t); }template <class T>inline mpreal operator / (const mpreal& r, const T& t){ return r / mpreal(t); }template <class T>inline mpreal operator + (const T& t, const mpreal& r){ return mpreal(t) + r; }template <class T>inline mpreal operator - (const T& t, const mpreal& r){ return mpreal(t) - r; }template <class T>inline mpreal operator * (const T& t, const mpreal& r){ return mpreal(t) * r; }template <class T>inline mpreal operator / (const T& t, const mpreal& r){ return mpreal(t) / r; }template <class T>inline bool operator == (const mpreal& r, const T& t){ return r == mpreal(t); }template <class T>inline bool operator != (const mpreal& r, const T& t){ return r != mpreal(t); }template <class T>inline bool operator <= (const mpreal& r, const T& t){ return r <= mpreal(t); }template <class T>inline bool operator >= (const mpreal& r, const T& t){ return r >= mpreal(t); }template <class T>inline bool operator < (const mpreal& r, const T& t){ return r < mpreal(t); }template <class T>inline bool operator > (const mpreal& r, const T& t){ return r > mpreal(t); }template <class T>inline bool operator == (const T& t, const mpreal& r){ return mpreal(t) == r; }template <class T>inline bool operator != (const T& t, const mpreal& r){ return mpreal(t) != r; }template <class T>inline bool operator <= (const T& t, const mpreal& r){ return mpreal(t) <= r; }template <class T>inline bool operator >= (const T& t, const mpreal& r){ return mpreal(t) >= r; }template <class T>inline bool operator < (const T& t, const mpreal& r){ return mpreal(t) < r; }template <class T>inline bool operator > (const T& t, const mpreal& r){ return mpreal(t) > r; }/*inline mpfr::mpreal fabs(const mpfr::mpreal& v){   return abs(v);}inline mpfr::mpreal pow(const mpfr::mpreal& b, const mpfr::mpreal e){   mpfr::mpreal result;   mpfr_pow(result.__get_mp(), b.__get_mp(), e.__get_mp(), GMP_RNDN);   return result;}*/inline mpfr::mpreal ldexp(const mpfr::mpreal& v, int e){   return mpfr::ldexp(v, static_cast<mp_exp_t>(e));}inline mpfr::mpreal frexp(const mpfr::mpreal& v, int* expon){   mp_exp_t e;   mpfr::mpreal r = mpfr::frexp(v, &e);   *expon = e;   return r;}#if (MPFR_VERSION < MPFR_VERSION_NUM(2,4,0))mpfr::mpreal fmod(const mpfr::mpreal& v1, const mpfr::mpreal& v2){   mpfr::mpreal n;   if(v1 < 0)      n = ceil(v1 / v2);   else      n = floor(v1 / v2);   return v1 - n * v2;}#endiftemplate <class Policy>inline mpfr::mpreal modf(const mpfr::mpreal& v, long long* ipart, const Policy& pol){   *ipart = lltrunc(v, pol);   return v - boost::math::tools::real_cast<mpfr::mpreal>(*ipart);}template <class Policy>inline int iround(mpfr::mpreal const& x, const Policy& pol){   return boost::math::tools::real_cast<int>(boost::math::round(x, pol));}template <class Policy>inline long lround(mpfr::mpreal const& x, const Policy& pol){   return boost::math::tools::real_cast<long>(boost::math::round(x, pol));}template <class Policy>inline long long llround(mpfr::mpreal const& x, const Policy& pol){   return boost::math::tools::real_cast<long long>(boost::math::round(x, pol));}template <class Policy>inline int itrunc(mpfr::mpreal const& x, const Policy& pol){   return boost::math::tools::real_cast<int>(boost::math::trunc(x, pol));}template <class Policy>inline long ltrunc(mpfr::mpreal const& x, const Policy& pol){   return boost::math::tools::real_cast<long>(boost::math::trunc(x, pol));}template <class Policy>inline long long lltrunc(mpfr::mpreal const& x, const Policy& pol){   return boost::math::tools::real_cast<long long>(boost::math::trunc(x, pol));}}namespace boost{ namespace math{#if defined(__GNUC__) && (__GNUC__ < 4)   using ::iround;   using ::lround;   using ::llround;   using ::itrunc;   using ::ltrunc;   using ::lltrunc;   using ::modf;#endifnamespace lanczos{struct mpreal_lanczos{   static mpfr::mpreal lanczos_sum(const mpfr::mpreal& z)   {      unsigned long p = z.get_default_prec();      if(p <= 72)         return lanczos13UDT::lanczos_sum(z);      else if(p <= 120)         return lanczos22UDT::lanczos_sum(z);      else if(p <= 170)         return lanczos31UDT::lanczos_sum(z);      else //if(p <= 370) approx 100 digit precision:         return lanczos61UDT::lanczos_sum(z);   }   static mpfr::mpreal lanczos_sum_expG_scaled(const mpfr::mpreal& z)   {      unsigned long p = z.get_default_prec();      if(p <= 72)         return lanczos13UDT::lanczos_sum_expG_scaled(z);      else if(p <= 120)         return lanczos22UDT::lanczos_sum_expG_scaled(z);      else if(p <= 170)         return lanczos31UDT::lanczos_sum_expG_scaled(z);      else //if(p <= 370) approx 100 digit precision:         return lanczos61UDT::lanczos_sum_expG_scaled(z);   }   static mpfr::mpreal lanczos_sum_near_1(const mpfr::mpreal& z)   {      unsigned long p = z.get_default_prec();      if(p <= 72)         return lanczos13UDT::lanczos_sum_near_1(z);      else if(p <= 120)         return lanczos22UDT::lanczos_sum_near_1(z);      else if(p <= 170)         return lanczos31UDT::lanczos_sum_near_1(z);      else //if(p <= 370) approx 100 digit precision:         return lanczos61UDT::lanczos_sum_near_1(z);   }   static mpfr::mpreal lanczos_sum_near_2(const mpfr::mpreal& z)   {      unsigned long p = z.get_default_prec();      if(p <= 72)         return lanczos13UDT::lanczos_sum_near_2(z);      else if(p <= 120)         return lanczos22UDT::lanczos_sum_near_2(z);      else if(p <= 170)         return lanczos31UDT::lanczos_sum_near_2(z);      else //if(p <= 370) approx 100 digit precision:         return lanczos61UDT::lanczos_sum_near_2(z);   }   static mpfr::mpreal g()   {       unsigned long p = mpfr::mpreal::get_default_prec();      if(p <= 72)         return lanczos13UDT::g();      else if(p <= 120)         return lanczos22UDT::g();      else if(p <= 170)         return lanczos31UDT::g();      else //if(p <= 370) approx 100 digit precision:         return lanczos61UDT::g();   }};template<class Policy>struct lanczos<mpfr::mpreal, Policy>{   typedef mpreal_lanczos type;};} // namespace lanczosnamespace tools{template<>inline int digits<mpfr::mpreal>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr::mpreal)){   return mpfr::mpreal::get_default_prec();}namespace detail{template<class I>void convert_to_long_result(mpfr::mpreal const& r, I& result){   result = 0;   I last_result(0);   mpfr::mpreal t(r);   double term;   do   {      term = real_cast<double>(t);      last_result = result;      result += static_cast<I>(term);      t -= term;   }while(result != last_result);}}template <>inline mpfr::mpreal real_cast<mpfr::mpreal, long long>(long long t){   mpfr::mpreal result;   int expon = 0;   int sign = 1;   if(t < 0)   {      sign = -1;      t = -t;   }   while(t)   {      result += ldexp((double)(t & 0xffffL), expon);      expon += 32;      t >>= 32;   }   return result * sign;}/*template <>inline unsigned real_cast<unsigned, mpfr::mpreal>(mpfr::mpreal t){   return t.get_ui();}template <>inline int real_cast<int, mpfr::mpreal>(mpfr::mpreal t){   return t.get_si();}template <>inline double real_cast<double, mpfr::mpreal>(mpfr::mpreal t){   return t.get_d();}template <>inline float real_cast<float, mpfr::mpreal>(mpfr::mpreal t){   return static_cast<float>(t.get_d());}template <>inline long real_cast<long, mpfr::mpreal>(mpfr::mpreal t){   long result;   detail::convert_to_long_result(t, result);   return result;}*/template <>inline long long real_cast<long long, mpfr::mpreal>(mpfr::mpreal t){   long long result;   detail::convert_to_long_result(t, result);   return result;}template <>inline mpfr::mpreal max_value<mpfr::mpreal>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr::mpreal)){   static bool has_init = false;   static mpfr::mpreal val(0.5);   if(!has_init)   {      val = ldexp(val, mpfr_get_emax());      has_init = true;   }   return val;}template <>inline mpfr::mpreal min_value<mpfr::mpreal>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr::mpreal)){   static bool has_init = false;   static mpfr::mpreal val(0.5);   if(!has_init)   {      val = ldexp(val, mpfr_get_emin());      has_init = true;   }   return val;}template <>inline mpfr::mpreal log_max_value<mpfr::mpreal>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr::mpreal)){   static bool has_init = false;   static mpfr::mpreal val = max_value<mpfr::mpreal>();   if(!has_init)   {      val = log(val);      has_init = true;   }   return val;}template <>inline mpfr::mpreal log_min_value<mpfr::mpreal>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr::mpreal)){   static bool has_init = false;   static mpfr::mpreal val = max_value<mpfr::mpreal>();   if(!has_init)   {      val = log(val);      has_init = true;   }   return val;}template <>inline mpfr::mpreal epsilon<mpfr::mpreal>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr::mpreal)){   return ldexp(mpfr::mpreal(1), 1-boost::math::policies::digits<mpfr::mpreal, boost::math::policies::policy<> >());}} // namespace toolstemplate <class Policy>inline mpfr::mpreal skewness(const extreme_value_distribution<mpfr::mpreal, Policy>& /*dist*/){   //   // This is 12 * sqrt(6) * zeta(3) / pi^3:   // See http://mathworld.wolfram.com/ExtremeValueDistribution.html   //   return boost::lexical_cast<mpfr::mpreal>("1.1395470994046486574927930193898461120875997958366");}template <class Policy>inline mpfr::mpreal skewness(const rayleigh_distribution<mpfr::mpreal, Policy>& /*dist*/){  // using namespace boost::math::constants;  return boost::lexical_cast<mpfr::mpreal>("0.63111065781893713819189935154422777984404221106391");  // Computed using NTL at 150 bit, about 50 decimal digits.  // return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>();}template <class Policy>inline mpfr::mpreal kurtosis(const rayleigh_distribution<mpfr::mpreal, Policy>& /*dist*/){  // using namespace boost::math::constants;  return boost::lexical_cast<mpfr::mpreal>("3.2450893006876380628486604106197544154170667057995");  // Computed using NTL at 150 bit, about 50 decimal digits.  // return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /  // (four_minus_pi<RealType>() * four_minus_pi<RealType>());}template <class Policy>inline mpfr::mpreal kurtosis_excess(const rayleigh_distribution<mpfr::mpreal, Policy>& /*dist*/){  //using namespace boost::math::constants;  // Computed using NTL at 150 bit, about 50 decimal digits.  return boost::lexical_cast<mpfr::mpreal>("0.2450893006876380628486604106197544154170667057995");  // return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /  //   (four_minus_pi<RealType>() * four_minus_pi<RealType>());} // kurtosisnamespace detail{//// Version of Digamma accurate to ~100 decimal digits.//template <class Policy>mpfr::mpreal digamma_imp(mpfr::mpreal x, const boost::integral_constant<int, 0>* , const Policy& pol){   //   // This handles reflection of negative arguments, and all our   // empfr_classor handling, then forwards to the T-specific approximation.   //   BOOST_MATH_STD_USING // ADL of std functions.   mpfr::mpreal result = 0;   //   // Check for negative arguments and use reflection:   //   if(x < 0)   {      // Reflect:      x = 1 - x;      // Argument reduction for tan:      mpfr::mpreal remainder = x - floor(x);      // Shift to negative if > 0.5:      if(remainder > 0.5)      {         remainder -= 1;      }      //      // check for evaluation at a negative pole:      //      if(remainder == 0)      {         return policies::raise_pole_error<mpfr::mpreal>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol);      }      result = constants::pi<mpfr::mpreal>() / tan(constants::pi<mpfr::mpreal>() * remainder);   }   result += big_digamma(x);   return result;}//// Specialisations of this function provides the initial// starting guess for Halley iteration://template <class Policy>mpfr::mpreal erf_inv_imp(const mpfr::mpreal& p, const mpfr::mpreal& q, const Policy&, const boost::integral_constant<int, 64>*){   BOOST_MATH_STD_USING // for ADL of std names.   mpfr::mpreal result = 0;      if(p <= 0.5)   {      //      // Evaluate inverse erf using the rational approximation:      //      // x = p(p+10)(Y+R(p))      //      // Where Y is a constant, and R(p) is optimised for a low      // absolute empfr_classor compared to |Y|.      //      // double: Max empfr_classor found: 2.001849e-18      // long double: Max empfr_classor found: 1.017064e-20      // Maximum Deviation Found (actual empfr_classor term at infinite precision) 8.030e-21      //      static const float Y = 0.0891314744949340820313f;      static const mpfr::mpreal P[] = {             -0.000508781949658280665617,         -0.00836874819741736770379,         0.0334806625409744615033,         -0.0126926147662974029034,         -0.0365637971411762664006,         0.0219878681111168899165,         0.00822687874676915743155,         -0.00538772965071242932965      };      static const mpfr::mpreal Q[] = {             1,         -0.970005043303290640362,         -1.56574558234175846809,         1.56221558398423026363,         0.662328840472002992063,         -0.71228902341542847553,         -0.0527396382340099713954,         0.0795283687341571680018,         -0.00233393759374190016776,         0.000886216390456424707504      };      mpfr::mpreal g = p * (p + 10);      mpfr::mpreal r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p);      result = g * Y + g * r;   }   else if(q >= 0.25)   {      //      // Rational approximation for 0.5 > q >= 0.25      //      // x = sqrt(-2*log(q)) / (Y + R(q))      //      // Where Y is a constant, and R(q) is optimised for a low      // absolute empfr_classor compared to Y.      //      // double : Max empfr_classor found: 7.403372e-17      // long double : Max empfr_classor found: 6.084616e-20      // Maximum Deviation Found (empfr_classor term) 4.811e-20      //      static const float Y = 2.249481201171875f;      static const mpfr::mpreal P[] = {             -0.202433508355938759655,         0.105264680699391713268,         8.37050328343119927838,         17.6447298408374015486,         -18.8510648058714251895,         -44.6382324441786960818,         17.445385985570866523,         21.1294655448340526258,         -3.67192254707729348546      };      static const mpfr::mpreal Q[] = {             1,         6.24264124854247537712,         3.9713437953343869095,         -28.6608180499800029974,         -20.1432634680485188801,         48.5609213108739935468,         10.8268667355460159008,         -22.6436933413139721736,         1.72114765761200282724      };      mpfr::mpreal g = sqrt(-2 * log(q));      mpfr::mpreal xs = q - 0.25;      mpfr::mpreal r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);      result = g / (Y + r);   }   else   {      //      // For q < 0.25 we have a series of rational approximations all      // of the general form:      //      // let: x = sqrt(-log(q))      //      // Then the result is given by:      //      // x(Y+R(x-B))      //      // where Y is a constant, B is the lowest value of x for which       // the approximation is valid, and R(x-B) is optimised for a low      // absolute empfr_classor compared to Y.      //      // Note that almost all code will really go through the first      // or maybe second approximation.  After than we're dealing with very      // small input values indeed: 80 and 128 bit long double's go all the      // way down to ~ 1e-5000 so the "tail" is rather long...      //      mpfr::mpreal x = sqrt(-log(q));      if(x < 3)      {         // Max empfr_classor found: 1.089051e-20         static const float Y = 0.807220458984375f;         static const mpfr::mpreal P[] = {                -0.131102781679951906451,            -0.163794047193317060787,            0.117030156341995252019,            0.387079738972604337464,            0.337785538912035898924,            0.142869534408157156766,            0.0290157910005329060432,            0.00214558995388805277169,            -0.679465575181126350155e-6,            0.285225331782217055858e-7,            -0.681149956853776992068e-9         };         static const mpfr::mpreal Q[] = {                1,            3.46625407242567245975,            5.38168345707006855425,            4.77846592945843778382,            2.59301921623620271374,            0.848854343457902036425,            0.152264338295331783612,            0.01105924229346489121         };         mpfr::mpreal xs = x - 1.125;         mpfr::mpreal R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);         result = Y * x + R * x;      }      else if(x < 6)      {         // Max empfr_classor found: 8.389174e-21         static const float Y = 0.93995571136474609375f;         static const mpfr::mpreal P[] = {                -0.0350353787183177984712,            -0.00222426529213447927281,            0.0185573306514231072324,            0.00950804701325919603619,            0.00187123492819559223345,            0.000157544617424960554631,            0.460469890584317994083e-5,            -0.230404776911882601748e-9,            0.266339227425782031962e-11         };         static const mpfr::mpreal Q[] = {                1,            1.3653349817554063097,            0.762059164553623404043,            0.220091105764131249824,            0.0341589143670947727934,            0.00263861676657015992959,            0.764675292302794483503e-4         };         mpfr::mpreal xs = x - 3;         mpfr::mpreal R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);         result = Y * x + R * x;      }      else if(x < 18)      {         // Max empfr_classor found: 1.481312e-19         static const float Y = 0.98362827301025390625f;         static const mpfr::mpreal P[] = {                -0.0167431005076633737133,            -0.00112951438745580278863,            0.00105628862152492910091,            0.000209386317487588078668,            0.149624783758342370182e-4,            0.449696789927706453732e-6,            0.462596163522878599135e-8,            -0.281128735628831791805e-13,            0.99055709973310326855e-16         };         static const mpfr::mpreal Q[] = {                1,            0.591429344886417493481,            0.138151865749083321638,            0.0160746087093676504695,            0.000964011807005165528527,            0.275335474764726041141e-4,            0.282243172016108031869e-6         };         mpfr::mpreal xs = x - 6;         mpfr::mpreal R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);         result = Y * x + R * x;      }      else if(x < 44)      {         // Max empfr_classor found: 5.697761e-20         static const float Y = 0.99714565277099609375f;         static const mpfr::mpreal P[] = {                -0.0024978212791898131227,            -0.779190719229053954292e-5,            0.254723037413027451751e-4,            0.162397777342510920873e-5,            0.396341011304801168516e-7,            0.411632831190944208473e-9,            0.145596286718675035587e-11,            -0.116765012397184275695e-17         };         static const mpfr::mpreal Q[] = {                1,            0.207123112214422517181,            0.0169410838120975906478,            0.000690538265622684595676,            0.145007359818232637924e-4,            0.144437756628144157666e-6,            0.509761276599778486139e-9         };         mpfr::mpreal xs = x - 18;         mpfr::mpreal R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);         result = Y * x + R * x;      }      else      {         // Max empfr_classor found: 1.279746e-20         static const float Y = 0.99941349029541015625f;         static const mpfr::mpreal P[] = {                -0.000539042911019078575891,            -0.28398759004727721098e-6,            0.899465114892291446442e-6,            0.229345859265920864296e-7,            0.225561444863500149219e-9,            0.947846627503022684216e-12,            0.135880130108924861008e-14,            -0.348890393399948882918e-21         };         static const mpfr::mpreal Q[] = {                1,            0.0845746234001899436914,            0.00282092984726264681981,            0.468292921940894236786e-4,            0.399968812193862100054e-6,            0.161809290887904476097e-8,            0.231558608310259605225e-11         };         mpfr::mpreal xs = x - 44;         mpfr::mpreal R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);         result = Y * x + R * x;      }   }   return result;}inline mpfr::mpreal bessel_i0(mpfr::mpreal x){    static const mpfr::mpreal P1[] = {        boost::lexical_cast<mpfr::mpreal>("-2.2335582639474375249e+15"),        boost::lexical_cast<mpfr::mpreal>("-5.5050369673018427753e+14"),        boost::lexical_cast<mpfr::mpreal>("-3.2940087627407749166e+13"),        boost::lexical_cast<mpfr::mpreal>("-8.4925101247114157499e+11"),        boost::lexical_cast<mpfr::mpreal>("-1.1912746104985237192e+10"),        boost::lexical_cast<mpfr::mpreal>("-1.0313066708737980747e+08"),        boost::lexical_cast<mpfr::mpreal>("-5.9545626019847898221e+05"),        boost::lexical_cast<mpfr::mpreal>("-2.4125195876041896775e+03"),        boost::lexical_cast<mpfr::mpreal>("-7.0935347449210549190e+00"),        boost::lexical_cast<mpfr::mpreal>("-1.5453977791786851041e-02"),        boost::lexical_cast<mpfr::mpreal>("-2.5172644670688975051e-05"),        boost::lexical_cast<mpfr::mpreal>("-3.0517226450451067446e-08"),        boost::lexical_cast<mpfr::mpreal>("-2.6843448573468483278e-11"),        boost::lexical_cast<mpfr::mpreal>("-1.5982226675653184646e-14"),        boost::lexical_cast<mpfr::mpreal>("-5.2487866627945699800e-18"),    };    static const mpfr::mpreal Q1[] = {        boost::lexical_cast<mpfr::mpreal>("-2.2335582639474375245e+15"),        boost::lexical_cast<mpfr::mpreal>("7.8858692566751002988e+12"),        boost::lexical_cast<mpfr::mpreal>("-1.2207067397808979846e+10"),        boost::lexical_cast<mpfr::mpreal>("1.0377081058062166144e+07"),        boost::lexical_cast<mpfr::mpreal>("-4.8527560179962773045e+03"),        boost::lexical_cast<mpfr::mpreal>("1.0"),    };    static const mpfr::mpreal P2[] = {        boost::lexical_cast<mpfr::mpreal>("-2.2210262233306573296e-04"),        boost::lexical_cast<mpfr::mpreal>("1.3067392038106924055e-02"),        boost::lexical_cast<mpfr::mpreal>("-4.4700805721174453923e-01"),        boost::lexical_cast<mpfr::mpreal>("5.5674518371240761397e+00"),        boost::lexical_cast<mpfr::mpreal>("-2.3517945679239481621e+01"),        boost::lexical_cast<mpfr::mpreal>("3.1611322818701131207e+01"),        boost::lexical_cast<mpfr::mpreal>("-9.6090021968656180000e+00"),    };    static const mpfr::mpreal Q2[] = {        boost::lexical_cast<mpfr::mpreal>("-5.5194330231005480228e-04"),        boost::lexical_cast<mpfr::mpreal>("3.2547697594819615062e-02"),        boost::lexical_cast<mpfr::mpreal>("-1.1151759188741312645e+00"),        boost::lexical_cast<mpfr::mpreal>("1.3982595353892851542e+01"),        boost::lexical_cast<mpfr::mpreal>("-6.0228002066743340583e+01"),        boost::lexical_cast<mpfr::mpreal>("8.5539563258012929600e+01"),        boost::lexical_cast<mpfr::mpreal>("-3.1446690275135491500e+01"),        boost::lexical_cast<mpfr::mpreal>("1.0"),    };    mpfr::mpreal value, factor, r;    BOOST_MATH_STD_USING    using namespace boost::math::tools;    if (x < 0)    {        x = -x;                         // even function    }    if (x == 0)    {        return static_cast<mpfr::mpreal>(1);    }    if (x <= 15)                        // x in (0, 15]    {        mpfr::mpreal y = x * x;        value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);    }    else                                // x in (15, \infty)    {        mpfr::mpreal y = 1 / x - mpfr::mpreal(1) / 15;        r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);        factor = exp(x) / sqrt(x);        value = factor * r;    }    return value;}inline mpfr::mpreal bessel_i1(mpfr::mpreal x){    static const mpfr::mpreal P1[] = {        static_cast<mpfr::mpreal>("-1.4577180278143463643e+15"),        static_cast<mpfr::mpreal>("-1.7732037840791591320e+14"),        static_cast<mpfr::mpreal>("-6.9876779648010090070e+12"),        static_cast<mpfr::mpreal>("-1.3357437682275493024e+11"),        static_cast<mpfr::mpreal>("-1.4828267606612366099e+09"),        static_cast<mpfr::mpreal>("-1.0588550724769347106e+07"),        static_cast<mpfr::mpreal>("-5.1894091982308017540e+04"),        static_cast<mpfr::mpreal>("-1.8225946631657315931e+02"),        static_cast<mpfr::mpreal>("-4.7207090827310162436e-01"),        static_cast<mpfr::mpreal>("-9.1746443287817501309e-04"),        static_cast<mpfr::mpreal>("-1.3466829827635152875e-06"),        static_cast<mpfr::mpreal>("-1.4831904935994647675e-09"),        static_cast<mpfr::mpreal>("-1.1928788903603238754e-12"),        static_cast<mpfr::mpreal>("-6.5245515583151902910e-16"),        static_cast<mpfr::mpreal>("-1.9705291802535139930e-19"),    };    static const mpfr::mpreal Q1[] = {        static_cast<mpfr::mpreal>("-2.9154360556286927285e+15"),        static_cast<mpfr::mpreal>("9.7887501377547640438e+12"),        static_cast<mpfr::mpreal>("-1.4386907088588283434e+10"),        static_cast<mpfr::mpreal>("1.1594225856856884006e+07"),        static_cast<mpfr::mpreal>("-5.1326864679904189920e+03"),        static_cast<mpfr::mpreal>("1.0"),    };    static const mpfr::mpreal P2[] = {        static_cast<mpfr::mpreal>("1.4582087408985668208e-05"),        static_cast<mpfr::mpreal>("-8.9359825138577646443e-04"),        static_cast<mpfr::mpreal>("2.9204895411257790122e-02"),        static_cast<mpfr::mpreal>("-3.4198728018058047439e-01"),        static_cast<mpfr::mpreal>("1.3960118277609544334e+00"),        static_cast<mpfr::mpreal>("-1.9746376087200685843e+00"),        static_cast<mpfr::mpreal>("8.5591872901933459000e-01"),        static_cast<mpfr::mpreal>("-6.0437159056137599999e-02"),    };    static const mpfr::mpreal Q2[] = {        static_cast<mpfr::mpreal>("3.7510433111922824643e-05"),        static_cast<mpfr::mpreal>("-2.2835624489492512649e-03"),        static_cast<mpfr::mpreal>("7.4212010813186530069e-02"),        static_cast<mpfr::mpreal>("-8.5017476463217924408e-01"),        static_cast<mpfr::mpreal>("3.2593714889036996297e+00"),        static_cast<mpfr::mpreal>("-3.8806586721556593450e+00"),        static_cast<mpfr::mpreal>("1.0"),    };    mpfr::mpreal value, factor, r, w;    BOOST_MATH_STD_USING    using namespace boost::math::tools;    w = abs(x);    if (x == 0)    {        return static_cast<mpfr::mpreal>(0);    }    if (w <= 15)                        // w in (0, 15]    {        mpfr::mpreal y = x * x;        r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);        factor = w;        value = factor * r;    }    else                                // w in (15, \infty)    {        mpfr::mpreal y = 1 / w - mpfr::mpreal(1) / 15;        r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);        factor = exp(w) / sqrt(w);        value = factor * r;    }    if (x < 0)    {        value *= -value;                 // odd function    }    return value;}} // namespace detail} // namespace math}#endif // BOOST_MATH_MPLFR_BINDINGS_HPP
 |