| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 | //  (C) Copyright John Maddock 2005.//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_MATH_COMPLEX_ATANH_INCLUDED#define BOOST_MATH_COMPLEX_ATANH_INCLUDED#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED#  include <boost/math/complex/details.hpp>#endif#ifndef BOOST_MATH_LOG1P_INCLUDED#  include <boost/math/special_functions/log1p.hpp>#endif#include <boost/assert.hpp>#ifdef BOOST_NO_STDC_NAMESPACEnamespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }#endifnamespace boost{ namespace math{template<class T> std::complex<T> atanh(const std::complex<T>& z){   //   // References:   //   // Eric W. Weisstein. "Inverse Hyperbolic Tangent."    // From MathWorld--A Wolfram Web Resource.    // http://mathworld.wolfram.com/InverseHyperbolicTangent.html   //   // Also: The Wolfram Functions Site,   // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/   //   // Also "Abramowitz and Stegun. Handbook of Mathematical Functions."   // at : http://jove.prohosting.com/~skripty/toc.htm   //   // See also: https://svn.boost.org/trac/boost/ticket/7291   //      static const T pi = boost::math::constants::pi<T>();   static const T half_pi = pi / 2;   static const T one = static_cast<T>(1.0L);   static const T two = static_cast<T>(2.0L);   static const T four = static_cast<T>(4.0L);   static const T zero = static_cast<T>(0);   static const T log_two = boost::math::constants::ln_two<T>();#ifdef BOOST_MSVC#pragma warning(push)#pragma warning(disable:4127)#endif   T x = std::fabs(z.real());   T y = std::fabs(z.imag());   T real, imag;  // our results   T safe_upper = detail::safe_max(two);   T safe_lower = detail::safe_min(static_cast<T>(2));   //   // Begin by handling the special cases specified in C99:   //   if((boost::math::isnan)(x))   {      if((boost::math::isnan)(y))         return std::complex<T>(x, x);      else if((boost::math::isinf)(y))         return std::complex<T>(0, ((boost::math::signbit)(z.imag()) ? -half_pi : half_pi));      else         return std::complex<T>(x, x);   }   else if((boost::math::isnan)(y))   {      if(x == 0)         return std::complex<T>(x, y);      if((boost::math::isinf)(x))         return std::complex<T>(0, y);      else         return std::complex<T>(y, y);   }   else if((x > safe_lower) && (x < safe_upper) && (y > safe_lower) && (y < safe_upper))   {      T yy = y*y;      T mxm1 = one - x;      ///      // The real part is given by:      //       // real(atanh(z)) == log1p(4*x / ((x-1)*(x-1) + y^2))      //       real = boost::math::log1p(four * x / (mxm1*mxm1 + yy));      real /= four;      if((boost::math::signbit)(z.real()))         real = (boost::math::changesign)(real);      imag = std::atan2((y * two), (mxm1*(one+x) - yy));      imag /= two;      if(z.imag() < 0)         imag = (boost::math::changesign)(imag);   }   else   {      //      // This section handles exception cases that would normally cause      // underflow or overflow in the main formulas.      //      // Begin by working out the real part, we need to approximate      //    real = boost::math::log1p(4x / ((x-1)^2 + y^2))      // without either overflow or underflow in the squared terms.      //      T mxm1 = one - x;      if(x >= safe_upper)      {         // x-1 = x to machine precision:         if((boost::math::isinf)(x) || (boost::math::isinf)(y))         {            real = 0;         }         else if(y >= safe_upper)         {            // Big x and y: divide through by x*y:            real = boost::math::log1p((four/y) / (x/y + y/x));         }         else if(y > one)         {            // Big x: divide through by x:            real = boost::math::log1p(four / (x + y*y/x));         }         else         {            // Big x small y, as above but neglect y^2/x:            real = boost::math::log1p(four/x);         }      }      else if(y >= safe_upper)      {         if(x > one)         {            // Big y, medium x, divide through by y:            real = boost::math::log1p((four*x/y) / (y + mxm1*mxm1/y));         }         else         {            // Small or medium x, large y:            real = four*x/y/y;         }      }      else if (x != one)      {         // y is small, calculate divisor carefully:         T div = mxm1*mxm1;         if(y > safe_lower)            div += y*y;         real = boost::math::log1p(four*x/div);      }      else         real = boost::math::changesign(two * (std::log(y) - log_two));      real /= four;      if((boost::math::signbit)(z.real()))         real = (boost::math::changesign)(real);      //      // Now handle imaginary part, this is much easier,      // if x or y are large, then the formula:      //    atan2(2y, (1-x)*(1+x) - y^2)      // evaluates to +-(PI - theta) where theta is negligible compared to PI.      //      if((x >= safe_upper) || (y >= safe_upper))      {         imag = pi;      }      else if(x <= safe_lower)      {         //         // If both x and y are small then atan(2y),         // otherwise just x^2 is negligible in the divisor:         //         if(y <= safe_lower)            imag = std::atan2(two*y, one);         else         {            if((y == zero) && (x == zero))               imag = 0;            else               imag = std::atan2(two*y, one - y*y);         }      }      else      {         //         // y^2 is negligible:         //         if((y == zero) && (x == one))            imag = 0;         else            imag = std::atan2(two*y, mxm1*(one+x));      }      imag /= two;      if((boost::math::signbit)(z.imag()))         imag = (boost::math::changesign)(imag);   }   return std::complex<T>(real, imag);#ifdef BOOST_MSVC#pragma warning(pop)#endif}} } // namespaces#endif // BOOST_MATH_COMPLEX_ATANH_INCLUDED
 |