| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535 | // boost/math/distributions/arcsine.hpp// Copyright John Maddock 2014.// Copyright Paul A. Bristow 2014.// Use, modification and distribution are subject to the// Boost Software License, Version 1.0.// (See accompanying file LICENSE_1_0.txt// or copy at http://www.boost.org/LICENSE_1_0.txt)// http://en.wikipedia.org/wiki/arcsine_distribution// The arcsine Distribution is a continuous probability distribution.// http://en.wikipedia.org/wiki/Arcsine_distribution// http://www.wolframalpha.com/input/?i=ArcSinDistribution// Standard arcsine distribution is a special case of beta distribution with both a & b = one half,// and 0 <= x <= 1.// It is generalized to include any bounded support a <= x <= b from 0 <= x <= 1// by Wolfram and Wikipedia,// but using location and scale parameters by// Virtual Laboratories in Probability and Statistics http://www.math.uah.edu/stat/index.html// http://www.math.uah.edu/stat/special/Arcsine.html// The end-point version is simpler and more obvious, so we implement that.// TODO Perhaps provide location and scale functions?#ifndef BOOST_MATH_DIST_ARCSINE_HPP#define BOOST_MATH_DIST_ARCSINE_HPP#include <boost/math/distributions/fwd.hpp>#include <boost/math/distributions/complement.hpp> // complements.#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks.#include <boost/math/constants/constants.hpp>#include <boost/math/special_functions/fpclassify.hpp> // isnan.#if defined (BOOST_MSVC)#  pragma warning(push)#  pragma warning(disable: 4702) // Unreachable code,// in domain_error_imp in error_handling.#endif#include <utility>#include <exception>  // For std::domain_error.namespace boost{  namespace math  {    namespace arcsine_detail    {      // Common error checking routines for arcsine distribution functions:      // Duplicating for x_min and x_max provides specific error messages.      template <class RealType, class Policy>      inline bool check_x_min(const char* function, const RealType& x, RealType* result, const Policy& pol)      {        if (!(boost::math::isfinite)(x))        {          *result = policies::raise_domain_error<RealType>(            function,            "x_min argument is %1%, but must be finite !", x, pol);          return false;        }        return true;      } // bool check_x_min      template <class RealType, class Policy>      inline bool check_x_max(const char* function, const RealType& x, RealType* result, const Policy& pol)      {        if (!(boost::math::isfinite)(x))        {          *result = policies::raise_domain_error<RealType>(            function,            "x_max argument is %1%, but must be finite !", x, pol);          return false;        }        return true;      } // bool check_x_max      template <class RealType, class Policy>      inline bool check_x_minmax(const char* function, const RealType& x_min, const RealType& x_max, RealType* result, const Policy& pol)      { // Check x_min < x_max        if (x_min >= x_max)        {          std::string msg = "x_max argument is %1%, but must be > x_min = " + lexical_cast<std::string>(x_min) + "!";          *result = policies::raise_domain_error<RealType>(            function,            msg.c_str(), x_max, pol);           // "x_max argument is %1%, but must be > x_min !", x_max, pol);            //  "x_max argument is %1%, but must be > x_min %2!", x_max, x_min, pol); would be better.           // But would require replication of all helpers functions in /policies/error_handling.hpp for two values,          // as well as two value versions of raise_error, raise_domain_error and do_format ...          // so use slightly hacky lexical_cast to string instead.          return false;        }        return true;      } // bool check_x_minmax      template <class RealType, class Policy>      inline bool check_prob(const char* function, const RealType& p, RealType* result, const Policy& pol)      {        if ((p < 0) || (p > 1) || !(boost::math::isfinite)(p))        {          *result = policies::raise_domain_error<RealType>(            function,            "Probability argument is %1%, but must be >= 0 and <= 1 !", p, pol);          return false;        }        return true;      } // bool check_prob      template <class RealType, class Policy>      inline bool check_x(const char* function, const RealType& x_min, const RealType& x_max, const RealType& x, RealType* result, const Policy& pol)      { // Check x finite and x_min < x < x_max.        if (!(boost::math::isfinite)(x))        {          *result = policies::raise_domain_error<RealType>(            function,            "x argument is %1%, but must be finite !", x, pol);          return false;        }        if ((x < x_min) || (x > x_max))        {          // std::cout << x_min << ' ' << x << x_max << std::endl;          *result = policies::raise_domain_error<RealType>(            function,            "x argument is %1%, but must be x_min < x < x_max !", x, pol);          // For example:          // Error in function boost::math::pdf(arcsine_distribution<double> const&, double) : x argument is -1.01, but must be x_min < x < x_max !          // TODO Perhaps show values of x_min and x_max?          return false;        }        return true;      } // bool check_x      template <class RealType, class Policy>      inline bool check_dist(const char* function, const RealType& x_min, const RealType& x_max, RealType* result, const Policy& pol)      { // Check both x_min and x_max finite, and x_min  < x_max.        return check_x_min(function, x_min, result, pol)            && check_x_max(function, x_max, result, pol)            && check_x_minmax(function, x_min, x_max, result, pol);      } // bool check_dist      template <class RealType, class Policy>      inline bool check_dist_and_x(const char* function, const RealType& x_min, const RealType& x_max, RealType x, RealType* result, const Policy& pol)      {        return check_dist(function, x_min, x_max, result, pol)          && arcsine_detail::check_x(function, x_min, x_max, x, result, pol);      } // bool check_dist_and_x      template <class RealType, class Policy>      inline bool check_dist_and_prob(const char* function, const RealType& x_min, const RealType& x_max, RealType p, RealType* result, const Policy& pol)      {        return check_dist(function, x_min, x_max, result, pol)          && check_prob(function, p, result, pol);      } // bool check_dist_and_prob    } // namespace arcsine_detail    template <class RealType = double, class Policy = policies::policy<> >    class arcsine_distribution    {    public:      typedef RealType value_type;      typedef Policy policy_type;      arcsine_distribution(RealType x_min = 0, RealType x_max = 1) : m_x_min(x_min), m_x_max(x_max)      { // Default beta (alpha = beta = 0.5) is standard arcsine with x_min = 0, x_max = 1.        // Generalized to allow x_min and x_max to be specified.        RealType result;        arcsine_detail::check_dist(          "boost::math::arcsine_distribution<%1%>::arcsine_distribution",          m_x_min,          m_x_max,          &result, Policy());      } // arcsine_distribution constructor.      // Accessor functions:      RealType x_min() const      {        return m_x_min;      }      RealType x_max() const      {        return m_x_max;      }    private:      RealType m_x_min; // Two x min and x max parameters of the arcsine distribution.      RealType m_x_max;    }; // template <class RealType, class Policy> class arcsine_distribution    // Convenient typedef to construct double version.    typedef arcsine_distribution<double> arcsine;    template <class RealType, class Policy>    inline const std::pair<RealType, RealType> range(const arcsine_distribution<RealType, Policy>&  dist)    { // Range of permissible values for random variable x.      using boost::math::tools::max_value;      return std::pair<RealType, RealType>(static_cast<RealType>(dist.x_min()), static_cast<RealType>(dist.x_max()));    }    template <class RealType, class Policy>    inline const std::pair<RealType, RealType> support(const arcsine_distribution<RealType, Policy>&  dist)    { // Range of supported values for random variable x.      // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.      return std::pair<RealType, RealType>(static_cast<RealType>(dist.x_min()), static_cast<RealType>(dist.x_max()));    }    template <class RealType, class Policy>    inline RealType mean(const arcsine_distribution<RealType, Policy>& dist)    { // Mean of arcsine distribution .      RealType result;      RealType x_min = dist.x_min();      RealType x_max = dist.x_max();      if (false == arcsine_detail::check_dist(        "boost::math::mean(arcsine_distribution<%1%> const&, %1% )",        x_min,        x_max,        &result, Policy())        )      {        return result;      }      return  (x_min + x_max) / 2;    } // mean    template <class RealType, class Policy>    inline RealType variance(const arcsine_distribution<RealType, Policy>& dist)    { // Variance of standard arcsine distribution = (1-0)/8 = 0.125.      RealType result;      RealType x_min = dist.x_min();      RealType x_max = dist.x_max();      if (false == arcsine_detail::check_dist(        "boost::math::variance(arcsine_distribution<%1%> const&, %1% )",        x_min,        x_max,        &result, Policy())        )      {        return result;      }      return  (x_max - x_min) * (x_max - x_min) / 8;    } // variance    template <class RealType, class Policy>    inline RealType mode(const arcsine_distribution<RealType, Policy>& /* dist */)    { //There are always [*two] values for the mode, at ['x_min] and at ['x_max], default 0 and 1,      // so instead we raise the exception domain_error.      return policies::raise_domain_error<RealType>(        "boost::math::mode(arcsine_distribution<%1%>&)",        "The arcsine distribution has two modes at x_min and x_max: "        "so the return value is %1%.",        std::numeric_limits<RealType>::quiet_NaN(), Policy());    } // mode    template <class RealType, class Policy>    inline RealType median(const arcsine_distribution<RealType, Policy>& dist)    { // Median of arcsine distribution (a + b) / 2 == mean.      RealType x_min = dist.x_min();      RealType x_max = dist.x_max();      RealType result;      if (false == arcsine_detail::check_dist(        "boost::math::median(arcsine_distribution<%1%> const&, %1% )",        x_min,        x_max,        &result, Policy())        )      {        return result;      }      return  (x_min + x_max) / 2;    }    template <class RealType, class Policy>    inline RealType skewness(const arcsine_distribution<RealType, Policy>& dist)    {      RealType result;      RealType x_min = dist.x_min();      RealType x_max = dist.x_max();      if (false == arcsine_detail::check_dist(        "boost::math::skewness(arcsine_distribution<%1%> const&, %1% )",        x_min,        x_max,        &result, Policy())        )      {        return result;      }      return 0;    } // skewness    template <class RealType, class Policy>    inline RealType kurtosis_excess(const arcsine_distribution<RealType, Policy>& dist)    {      RealType result;      RealType x_min = dist.x_min();      RealType x_max = dist.x_max();      if (false == arcsine_detail::check_dist(        "boost::math::kurtosis_excess(arcsine_distribution<%1%> const&, %1% )",        x_min,        x_max,        &result, Policy())        )      {        return result;      }      result = -3;      return  result / 2;    } // kurtosis_excess    template <class RealType, class Policy>    inline RealType kurtosis(const arcsine_distribution<RealType, Policy>& dist)    {      RealType result;      RealType x_min = dist.x_min();      RealType x_max = dist.x_max();      if (false == arcsine_detail::check_dist(        "boost::math::kurtosis(arcsine_distribution<%1%> const&, %1% )",        x_min,        x_max,        &result, Policy())        )      {        return result;      }      return 3 + kurtosis_excess(dist);    } // kurtosis    template <class RealType, class Policy>    inline RealType pdf(const arcsine_distribution<RealType, Policy>& dist, const RealType& xx)    { // Probability Density/Mass Function arcsine.      BOOST_FPU_EXCEPTION_GUARD      BOOST_MATH_STD_USING // For ADL of std functions.      static const char* function = "boost::math::pdf(arcsine_distribution<%1%> const&, %1%)";      RealType lo = dist.x_min();      RealType hi = dist.x_max();      RealType x = xx;      // Argument checks:      RealType result = 0;       if (false == arcsine_detail::check_dist_and_x(        function,        lo, hi, x,        &result, Policy()))      {        return result;      }      using boost::math::constants::pi;      result = static_cast<RealType>(1) / (pi<RealType>() * sqrt((x - lo) * (hi - x)));      return result;    } // pdf    template <class RealType, class Policy>    inline RealType cdf(const arcsine_distribution<RealType, Policy>& dist, const RealType& x)    { // Cumulative Distribution Function arcsine.      BOOST_MATH_STD_USING // For ADL of std functions.      static const char* function = "boost::math::cdf(arcsine_distribution<%1%> const&, %1%)";      RealType x_min = dist.x_min();      RealType x_max = dist.x_max();      // Argument checks:      RealType result = 0;      if (false == arcsine_detail::check_dist_and_x(        function,        x_min, x_max, x,        &result, Policy()))      {        return result;      }      // Special cases:      if (x == x_min)      {        return 0;      }      else if (x == x_max)      {        return 1;      }      using boost::math::constants::pi;      result = static_cast<RealType>(2) * asin(sqrt((x - x_min) / (x_max - x_min))) / pi<RealType>();      return result;    } // arcsine cdf    template <class RealType, class Policy>    inline RealType cdf(const complemented2_type<arcsine_distribution<RealType, Policy>, RealType>& c)    { // Complemented Cumulative Distribution Function arcsine.      BOOST_MATH_STD_USING // For ADL of std functions.      static const char* function = "boost::math::cdf(arcsine_distribution<%1%> const&, %1%)";      RealType x = c.param;      arcsine_distribution<RealType, Policy> const& dist = c.dist;      RealType x_min = dist.x_min();      RealType x_max = dist.x_max();      // Argument checks:      RealType result = 0;      if (false == arcsine_detail::check_dist_and_x(        function,        x_min, x_max, x,        &result, Policy()))      {        return result;      }      if (x == x_min)      {        return 0;      }      else if (x == x_max)      {        return 1;      }      using boost::math::constants::pi;      // Naive version x = 1 - x;      // result = static_cast<RealType>(2) * asin(sqrt((x - x_min) / (x_max - x_min))) / pi<RealType>();      // is less accurate, so use acos instead of asin for complement.      result = static_cast<RealType>(2) * acos(sqrt((x - x_min) / (x_max - x_min))) / pi<RealType>();      return result;    } // arcsine ccdf    template <class RealType, class Policy>    inline RealType quantile(const arcsine_distribution<RealType, Policy>& dist, const RealType& p)    {       // Quantile or Percent Point arcsine function or      // Inverse Cumulative probability distribution function CDF.      // Return x (0 <= x <= 1),      // for a given probability p (0 <= p <= 1).      // These functions take a probability as an argument      // and return a value such that the probability that a random variable x      // will be less than or equal to that value      // is whatever probability you supplied as an argument.      BOOST_MATH_STD_USING // For ADL of std functions.      using boost::math::constants::half_pi;      static const char* function = "boost::math::quantile(arcsine_distribution<%1%> const&, %1%)";      RealType result = 0; // of argument checks:      RealType x_min = dist.x_min();      RealType x_max = dist.x_max();      if (false == arcsine_detail::check_dist_and_prob(        function,        x_min, x_max, p,        &result, Policy()))      {        return result;      }      // Special cases:      if (p == 0)      {        return 0;      }      if (p == 1)      {        return 1;      }      RealType sin2hpip = sin(half_pi<RealType>() * p);      RealType sin2hpip2 = sin2hpip * sin2hpip;      result = -x_min * sin2hpip2 + x_min + x_max * sin2hpip2;      return result;    } // quantile    template <class RealType, class Policy>    inline RealType quantile(const complemented2_type<arcsine_distribution<RealType, Policy>, RealType>& c)    {       // Complement Quantile or Percent Point arcsine function.      // Return the number of expected x for a given      // complement of the probability q.      BOOST_MATH_STD_USING // For ADL of std functions.      using boost::math::constants::half_pi;      static const char* function = "boost::math::quantile(arcsine_distribution<%1%> const&, %1%)";      // Error checks:      RealType q = c.param;      const arcsine_distribution<RealType, Policy>& dist = c.dist;      RealType result = 0;      RealType x_min = dist.x_min();      RealType x_max = dist.x_max();      if (false == arcsine_detail::check_dist_and_prob(        function,        x_min,        x_max,        q,        &result, Policy()))      {        return result;      }      // Special cases:      if (q == 1)      {        return 0;      }      if (q == 0)      {        return 1;      }      // Naive RealType p = 1 - q; result = sin(half_pi<RealType>() * p); loses accuracy, so use a cos alternative instead.      //result = cos(half_pi<RealType>() * q); // for arcsine(0,1)      //result = result * result;      // For generalized arcsine:      RealType cos2hpip = cos(half_pi<RealType>() * q);      RealType cos2hpip2 = cos2hpip * cos2hpip;      result = -x_min * cos2hpip2 + x_min + x_max * cos2hpip2;      return result;    } // Quantile Complement  } // namespace math} // namespace boost// This include must be at the end, *after* the accessors// for this distribution have been defined, in order to// keep compilers that support two-phase lookup happy.#include <boost/math/distributions/detail/derived_accessors.hpp>#if defined (BOOST_MSVC)# pragma warning(pop)#endif#endif // BOOST_MATH_DIST_ARCSINE_HPP
 |