| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516 | // boost\math\distributions\geometric.hpp// Copyright John Maddock 2010.// Copyright Paul A. Bristow 2010.// Use, modification and distribution are subject to the// Boost Software License, Version 1.0.// (See accompanying file LICENSE_1_0.txt// or copy at http://www.boost.org/LICENSE_1_0.txt)// geometric distribution is a discrete probability distribution.// It expresses the probability distribution of the number (k) of// events, occurrences, failures or arrivals before the first success.// supported on the set {0, 1, 2, 3...}// Note that the set includes zero (unlike some definitions that start at one).// The random variate k is the number of events, occurrences or arrivals.// k argument may be integral, signed, or unsigned, or floating point.// If necessary, it has already been promoted from an integral type.// Note that the geometric distribution// (like others including the binomial, geometric & Bernoulli)// is strictly defined as a discrete function:// only integral values of k are envisaged.// However because the method of calculation uses a continuous gamma function,// it is convenient to treat it as if a continuous function,// and permit non-integral values of k.// To enforce the strict mathematical model, users should use floor or ceil functions// on k outside this function to ensure that k is integral.// See http://en.wikipedia.org/wiki/geometric_distribution// http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html// http://mathworld.wolfram.com/GeometricDistribution.html#ifndef BOOST_MATH_SPECIAL_GEOMETRIC_HPP#define BOOST_MATH_SPECIAL_GEOMETRIC_HPP#include <boost/math/distributions/fwd.hpp>#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b).#include <boost/math/distributions/complement.hpp> // complement.#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error.#include <boost/math/special_functions/fpclassify.hpp> // isnan.#include <boost/math/tools/roots.hpp> // for root finding.#include <boost/math/distributions/detail/inv_discrete_quantile.hpp>#include <boost/type_traits/is_floating_point.hpp>#include <boost/type_traits/is_integral.hpp>#include <boost/type_traits/is_same.hpp>#include <boost/mpl/if.hpp>#include <limits> // using std::numeric_limits;#include <utility>#if defined (BOOST_MSVC)#  pragma warning(push)// This believed not now necessary, so commented out.//#  pragma warning(disable: 4702) // unreachable code.// in domain_error_imp in error_handling.#endifnamespace boost{  namespace math  {    namespace geometric_detail    {      // Common error checking routines for geometric distribution function:      template <class RealType, class Policy>      inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)      {        if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) )        {          *result = policies::raise_domain_error<RealType>(            function,            "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);          return false;        }        return true;      }      template <class RealType, class Policy>      inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& pol)      {        return check_success_fraction(function, p, result, pol);      }      template <class RealType, class Policy>      inline bool check_dist_and_k(const char* function,  const RealType& p, RealType k, RealType* result, const Policy& pol)      {        if(check_dist(function, p, result, pol) == false)        {          return false;        }        if( !(boost::math::isfinite)(k) || (k < 0) )        { // Check k failures.          *result = policies::raise_domain_error<RealType>(            function,            "Number of failures argument is %1%, but must be >= 0 !", k, pol);          return false;        }        return true;      } // Check_dist_and_k      template <class RealType, class Policy>      inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& pol)      {        if((check_dist(function, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false)        {          return false;        }        return true;      } // check_dist_and_prob    } //  namespace geometric_detail    template <class RealType = double, class Policy = policies::policy<> >    class geometric_distribution    {    public:      typedef RealType value_type;      typedef Policy policy_type;      geometric_distribution(RealType p) : m_p(p)      { // Constructor stores success_fraction p.        RealType result;        geometric_detail::check_dist(          "geometric_distribution<%1%>::geometric_distribution",          m_p, // Check success_fraction 0 <= p <= 1.          &result, Policy());      } // geometric_distribution constructor.      // Private data getter class member functions.      RealType success_fraction() const      { // Probability of success as fraction in range 0 to 1.        return m_p;      }      RealType successes() const      { // Total number of successes r = 1 (for compatibility with negative binomial?).        return 1;      }      // Parameter estimation.      // (These are copies of negative_binomial distribution with successes = 1).      static RealType find_lower_bound_on_p(        RealType trials,        RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.      {        static const char* function = "boost::math::geometric<%1%>::find_lower_bound_on_p";        RealType result = 0;  // of error checks.        RealType successes = 1;        RealType failures = trials - successes;        if(false == detail::check_probability(function, alpha, &result, Policy())          && geometric_detail::check_dist_and_k(          function, RealType(0), failures, &result, Policy()))        {          return result;        }        // Use complement ibeta_inv function for lower bound.        // This is adapted from the corresponding binomial formula        // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm        // This is a Clopper-Pearson interval, and may be overly conservative,        // see also "A Simple Improved Inferential Method for Some        // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY        // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf        //        return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy());      } // find_lower_bound_on_p      static RealType find_upper_bound_on_p(        RealType trials,        RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.      {        static const char* function = "boost::math::geometric<%1%>::find_upper_bound_on_p";        RealType result = 0;  // of error checks.        RealType successes = 1;        RealType failures = trials - successes;        if(false == geometric_detail::check_dist_and_k(          function, RealType(0), failures, &result, Policy())          && detail::check_probability(function, alpha, &result, Policy()))        {          return result;        }        if(failures == 0)        {           return 1;        }// Use complement ibetac_inv function for upper bound.        // Note adjusted failures value: *not* failures+1 as usual.        // This is adapted from the corresponding binomial formula        // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm        // This is a Clopper-Pearson interval, and may be overly conservative,        // see also "A Simple Improved Inferential Method for Some        // Discrete Distributions" Yong CAI and K. Krishnamoorthy        // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf        //        return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy());      } // find_upper_bound_on_p      // Estimate number of trials :      // "How many trials do I need to be P% sure of seeing k or fewer failures?"      static RealType find_minimum_number_of_trials(        RealType k,     // number of failures (k >= 0).        RealType p,     // success fraction 0 <= p <= 1.        RealType alpha) // risk level threshold 0 <= alpha <= 1.      {        static const char* function = "boost::math::geometric<%1%>::find_minimum_number_of_trials";        // Error checks:        RealType result = 0;        if(false == geometric_detail::check_dist_and_k(          function, p, k, &result, Policy())          && detail::check_probability(function, alpha, &result, Policy()))        {          return result;        }        result = ibeta_inva(k + 1, p, alpha, Policy());  // returns n - k        return result + k;      } // RealType find_number_of_failures      static RealType find_maximum_number_of_trials(        RealType k,     // number of failures (k >= 0).        RealType p,     // success fraction 0 <= p <= 1.        RealType alpha) // risk level threshold 0 <= alpha <= 1.      {        static const char* function = "boost::math::geometric<%1%>::find_maximum_number_of_trials";        // Error checks:        RealType result = 0;        if(false == geometric_detail::check_dist_and_k(          function, p, k, &result, Policy())          &&  detail::check_probability(function, alpha, &result, Policy()))        {           return result;        }        result = ibetac_inva(k + 1, p, alpha, Policy());  // returns n - k        return result + k;      } // RealType find_number_of_trials complemented    private:      //RealType m_r; // successes fixed at unity.      RealType m_p; // success_fraction    }; // template <class RealType, class Policy> class geometric_distribution    typedef geometric_distribution<double> geometric; // Reserved name of type double.    template <class RealType, class Policy>    inline const std::pair<RealType, RealType> range(const geometric_distribution<RealType, Policy>& /* dist */)    { // Range of permissible values for random variable k.       using boost::math::tools::max_value;       return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?    }    template <class RealType, class Policy>    inline const std::pair<RealType, RealType> support(const geometric_distribution<RealType, Policy>& /* dist */)    { // Range of supported values for random variable k.       // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.       using boost::math::tools::max_value;       return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>()); // max_integer?    }    template <class RealType, class Policy>    inline RealType mean(const geometric_distribution<RealType, Policy>& dist)    { // Mean of geometric distribution = (1-p)/p.      return (1 - dist.success_fraction() ) / dist.success_fraction();    } // mean    // median implemented via quantile(half) in derived accessors.    template <class RealType, class Policy>    inline RealType mode(const geometric_distribution<RealType, Policy>&)    { // Mode of geometric distribution = zero.      BOOST_MATH_STD_USING // ADL of std functions.      return 0;    } // mode        template <class RealType, class Policy>    inline RealType variance(const geometric_distribution<RealType, Policy>& dist)    { // Variance of Binomial distribution = (1-p) / p^2.      return  (1 - dist.success_fraction())        / (dist.success_fraction() * dist.success_fraction());    } // variance    template <class RealType, class Policy>    inline RealType skewness(const geometric_distribution<RealType, Policy>& dist)    { // skewness of geometric distribution = 2-p / (sqrt(r(1-p))      BOOST_MATH_STD_USING // ADL of std functions.      RealType p = dist.success_fraction();      return (2 - p) / sqrt(1 - p);    } // skewness    template <class RealType, class Policy>    inline RealType kurtosis(const geometric_distribution<RealType, Policy>& dist)    { // kurtosis of geometric distribution      // http://en.wikipedia.org/wiki/geometric is kurtosis_excess so add 3      RealType p = dist.success_fraction();      return 3 + (p*p - 6*p + 6) / (1 - p);    } // kurtosis     template <class RealType, class Policy>    inline RealType kurtosis_excess(const geometric_distribution<RealType, Policy>& dist)    { // kurtosis excess of geometric distribution      // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess      RealType p = dist.success_fraction();      return (p*p - 6*p + 6) / (1 - p);    } // kurtosis_excess    // RealType standard_deviation(const geometric_distribution<RealType, Policy>& dist)    // standard_deviation provided by derived accessors.    // RealType hazard(const geometric_distribution<RealType, Policy>& dist)    // hazard of geometric distribution provided by derived accessors.    // RealType chf(const geometric_distribution<RealType, Policy>& dist)    // chf of geometric distribution provided by derived accessors.    template <class RealType, class Policy>    inline RealType pdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k)    { // Probability Density/Mass Function.      BOOST_FPU_EXCEPTION_GUARD      BOOST_MATH_STD_USING  // For ADL of math functions.      static const char* function = "boost::math::pdf(const geometric_distribution<%1%>&, %1%)";      RealType p = dist.success_fraction();      RealType result = 0;      if(false == geometric_detail::check_dist_and_k(        function,        p,        k,        &result, Policy()))      {        return result;      }      if (k == 0)      {        return p; // success_fraction      }      RealType q = 1 - p;  // Inaccurate for small p?      // So try to avoid inaccuracy for large or small p.      // but has little effect > last significant bit.      //cout << "p *  pow(q, k) " << result << endl; // seems best whatever p      //cout << "exp(p * k * log1p(-p)) " << p * exp(k * log1p(-p)) << endl;      //if (p < 0.5)      //{      //  result = p *  pow(q, k);      //}      //else      //{      //  result = p * exp(k * log1p(-p));      //}      result = p * pow(q, k);      return result;    } // geometric_pdf    template <class RealType, class Policy>    inline RealType cdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k)    { // Cumulative Distribution Function of geometric.      static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)";      // k argument may be integral, signed, or unsigned, or floating point.      // If necessary, it has already been promoted from an integral type.      RealType p = dist.success_fraction();      // Error check:      RealType result = 0;      if(false == geometric_detail::check_dist_and_k(        function,        p,        k,        &result, Policy()))      {        return result;      }      if(k == 0)      {        return p; // success_fraction      }      //RealType q = 1 - p;  // Bad for small p      //RealType probability = 1 - std::pow(q, k+1);      RealType z = boost::math::log1p(-p, Policy()) * (k + 1);      RealType probability = -boost::math::expm1(z, Policy());      return probability;    } // cdf Cumulative Distribution Function geometric.      template <class RealType, class Policy>      inline RealType cdf(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c)      { // Complemented Cumulative Distribution Function geometric.      BOOST_MATH_STD_USING      static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)";      // k argument may be integral, signed, or unsigned, or floating point.      // If necessary, it has already been promoted from an integral type.      RealType const& k = c.param;      geometric_distribution<RealType, Policy> const& dist = c.dist;      RealType p = dist.success_fraction();      // Error check:      RealType result = 0;      if(false == geometric_detail::check_dist_and_k(        function,        p,        k,        &result, Policy()))      {        return result;      }      RealType z = boost::math::log1p(-p, Policy()) * (k+1);      RealType probability = exp(z);      return probability;    } // cdf Complemented Cumulative Distribution Function geometric.    template <class RealType, class Policy>    inline RealType quantile(const geometric_distribution<RealType, Policy>& dist, const RealType& x)    { // Quantile, percentile/100 or Percent Point geometric function.      // Return the number of expected failures k for a given probability p.      // Inverse cumulative Distribution Function or Quantile (percentile / 100) of geometric Probability.      // k argument may be integral, signed, or unsigned, or floating point.      static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)";      BOOST_MATH_STD_USING // ADL of std functions.      RealType success_fraction = dist.success_fraction();      // Check dist and x.      RealType result = 0;      if(false == geometric_detail::check_dist_and_prob        (function, success_fraction, x, &result, Policy()))      {        return result;      }      // Special cases.      if (x == 1)      {  // Would need +infinity failures for total confidence.        result = policies::raise_overflow_error<RealType>(            function,            "Probability argument is 1, which implies infinite failures !", Policy());        return result;       // usually means return +std::numeric_limits<RealType>::infinity();       // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR      }      if (x == 0)      { // No failures are expected if P = 0.        return 0; // Total trials will be just dist.successes.      }      // if (P <= pow(dist.success_fraction(), 1))      if (x <= success_fraction)      { // p <= pdf(dist, 0) == cdf(dist, 0)        return 0;      }      if (x == 1)      {        return 0;      }         // log(1-x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small      result = boost::math::log1p(-x, Policy()) / boost::math::log1p(-success_fraction, Policy()) - 1;      // Subtract a few epsilons here too?      // to make sure it doesn't slip over, so ceil would be one too many.      return result;    } // RealType quantile(const geometric_distribution dist, p)    template <class RealType, class Policy>    inline RealType quantile(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c)    {  // Quantile or Percent Point Binomial function.       // Return the number of expected failures k for a given       // complement of the probability Q = 1 - P.       static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)";       BOOST_MATH_STD_USING       // Error checks:       RealType x = c.param;       const geometric_distribution<RealType, Policy>& dist = c.dist;       RealType success_fraction = dist.success_fraction();       RealType result = 0;       if(false == geometric_detail::check_dist_and_prob(          function,          success_fraction,          x,          &result, Policy()))       {          return result;       }       // Special cases:       if(x == 1)       {  // There may actually be no answer to this question,          // since the probability of zero failures may be non-zero,          return 0; // but zero is the best we can do:       }       if (-x <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy()))       {  // q <= cdf(complement(dist, 0)) == pdf(dist, 0)          return 0; //       }       if(x == 0)       {  // Probability 1 - Q  == 1 so infinite failures to achieve certainty.          // Would need +infinity failures for total confidence.          result = policies::raise_overflow_error<RealType>(             function,             "Probability argument complement is 0, which implies infinite failures !", Policy());          return result;          // usually means return +std::numeric_limits<RealType>::infinity();          // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR       }       // log(x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small       result = log(x) / boost::math::log1p(-success_fraction, Policy()) - 1;      return result;    } // quantile complement } // namespace math} // namespace boost// This include must be at the end, *after* the accessors// for this distribution have been defined, in order to// keep compilers that support two-phase lookup happy.#include <boost/math/distributions/detail/derived_accessors.hpp>#if defined (BOOST_MSVC)# pragma warning(pop)#endif#endif // BOOST_MATH_SPECIAL_GEOMETRIC_HPP
 |