| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 | //    boost asinh.hpp header file//  (C) Copyright Eric Ford & Hubert Holin 2001.//  (C) Copyright John Maddock 2008.//  Distributed under the Boost Software License, Version 1.0. (See//  accompanying file LICENSE_1_0.txt or copy at//  http://www.boost.org/LICENSE_1_0.txt)// See http://www.boost.org for updates, documentation, and revision history.#ifndef BOOST_ASINH_HPP#define BOOST_ASINH_HPP#ifdef _MSC_VER#pragma once#endif#include <boost/config/no_tr1/cmath.hpp>#include <boost/config.hpp>#include <boost/math/tools/precision.hpp>#include <boost/math/special_functions/math_fwd.hpp>#include <boost/math/special_functions/sqrt1pm1.hpp>#include <boost/math/special_functions/log1p.hpp>#include <boost/math/constants/constants.hpp>// This is the inverse of the hyperbolic sine function.namespace boost{    namespace math    {       namespace detail{        template<typename T, class Policy>        inline T    asinh_imp(const T x, const Policy& pol)        {            BOOST_MATH_STD_USING                        if((boost::math::isnan)(x))            {               return policies::raise_domain_error<T>(                  "boost::math::asinh<%1%>(%1%)",                  "asinh requires a finite argument, but got x = %1%.", x, pol);            }            if        (x >= tools::forth_root_epsilon<T>())            {               if        (x > 1 / tools::root_epsilon<T>())                {                    // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/06/01/0001/                    // approximation by laurent series in 1/x at 0+ order from -1 to 1                    return constants::ln_two<T>() + log(x) + 1/ (4 * x * x);                }                else if(x < 0.5f)                {                   // As below, but rearranged to preserve digits:                   return boost::math::log1p(x + boost::math::sqrt1pm1(x * x, pol), pol);                }                else                {                    // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/02/                    return( log( x + sqrt(x*x+1) ) );                }            }            else if    (x <= -tools::forth_root_epsilon<T>())            {                return(-asinh(-x, pol));            }            else            {                // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/03/01/0001/                // approximation by taylor series in x at 0 up to order 2                T    result = x;                                if    (abs(x) >= tools::root_epsilon<T>())                {                    T    x3 = x*x*x;                                        // approximation by taylor series in x at 0 up to order 4                    result -= x3/static_cast<T>(6);                }                                return(result);            }        }       }        template<typename T>        inline typename tools::promote_args<T>::type asinh(T x)        {           return boost::math::asinh(x, policies::policy<>());        }        template<typename T, typename Policy>        inline typename tools::promote_args<T>::type asinh(T x, const Policy&)        {            typedef typename tools::promote_args<T>::type result_type;            typedef typename policies::evaluation<result_type, Policy>::type value_type;            typedef typename policies::normalise<               Policy,                policies::promote_float<false>,                policies::promote_double<false>,                policies::discrete_quantile<>,               policies::assert_undefined<> >::type forwarding_policy;           return policies::checked_narrowing_cast<result_type, forwarding_policy>(              detail::asinh_imp(static_cast<value_type>(x), forwarding_policy()),              "boost::math::asinh<%1%>(%1%)");        }    }}#endif /* BOOST_ASINH_HPP */
 |