| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 | //  (C) Copyright Nick Thompson 2019.//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_MATH_SPECIAL_GEGENBAUER_HPP#define BOOST_MATH_SPECIAL_GEGENBAUER_HPP#include <stdexcept>#include <type_traits>namespace boost { namespace math {template<typename Real>Real gegenbauer(unsigned n, Real lambda, Real x){    static_assert(!std::is_integral<Real>::value, "Gegenbauer polynomials required floating point arguments.");    if (lambda <= -1/Real(2)) {        throw std::domain_error("lambda > -1/2 is required.");    }    // The only reason to do this is because of some instability that could be present for x < 0 that is not present for x > 0.    // I haven't observed this, but then again, I haven't managed to test an exhaustive number of parameters.    // In any case, the routine is distinctly faster without this test:    //if (x < 0) {    //    if (n&1) {    //        return -gegenbauer(n, lambda, -x);    //    }    //    return gegenbauer(n, lambda, -x);    //}    if (n == 0) {        return Real(1);    }    Real y0 = 1;    Real y1 = 2*lambda*x;    Real yk = y1;    Real k = 2;    Real k_max = n*(1+std::numeric_limits<Real>::epsilon());    Real gamma = 2*(lambda - 1);    while(k < k_max)    {        yk = ( (2 + gamma/k)*x*y1 - (1+gamma/k)*y0);        y0 = y1;        y1 = yk;        k += 1;    }    return yk;}template<typename Real>Real gegenbauer_derivative(unsigned n, Real lambda, Real x, unsigned k){    if (k > n) {        return Real(0);    }    Real gegen = gegenbauer<Real>(n-k, lambda + k, x);    Real scale = 1;    for (unsigned j = 0; j < k; ++j) {        scale *= 2*lambda;        lambda += 1;    }    return scale*gegen;}template<typename Real>Real gegenbauer_prime(unsigned n, Real lambda, Real x) {    return gegenbauer_derivative<Real>(n, lambda, x, 1);}}}#endif
 |