| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 | //  (C) Copyright Nick Thompson 2018.//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_MATH_TOOLS_BIVARIATE_STATISTICS_HPP#define BOOST_MATH_TOOLS_BIVARIATE_STATISTICS_HPP#include <iterator>#include <tuple>#include <boost/assert.hpp>#include <boost/config/header_deprecated.hpp>BOOST_HEADER_DEPRECATED("<boost/math/statistics/bivariate_statistics.hpp>");namespace boost{ namespace math{ namespace tools {template<class Container>auto means_and_covariance(Container const & u, Container const & v){    using Real = typename Container::value_type;    using std::size;    BOOST_ASSERT_MSG(size(u) == size(v), "The size of each vector must be the same to compute covariance.");    BOOST_ASSERT_MSG(size(u) > 0, "Computing covariance requires at least one sample.");    // See Equation III.9 of "Numerically Stable, Single-Pass, Parallel Statistics Algorithms", Bennet et al.    Real cov = 0;    Real mu_u = u[0];    Real mu_v = v[0];    for(size_t i = 1; i < size(u); ++i)    {        Real u_tmp = (u[i] - mu_u)/(i+1);        Real v_tmp = v[i] - mu_v;        cov += i*u_tmp*v_tmp;        mu_u = mu_u + u_tmp;        mu_v = mu_v + v_tmp/(i+1);    }    return std::make_tuple(mu_u, mu_v, cov/size(u));}template<class Container>auto covariance(Container const & u, Container const & v){    auto [mu_u, mu_v, cov] = boost::math::tools::means_and_covariance(u, v);    return cov;}template<class Container>auto correlation_coefficient(Container const & u, Container const & v){    using Real = typename Container::value_type;    using std::size;    BOOST_ASSERT_MSG(size(u) == size(v), "The size of each vector must be the same to compute covariance.");    BOOST_ASSERT_MSG(size(u) > 0, "Computing covariance requires at least two samples.");    Real cov = 0;    Real mu_u = u[0];    Real mu_v = v[0];    Real Qu = 0;    Real Qv = 0;    for(size_t i = 1; i < size(u); ++i)    {        Real u_tmp = u[i] - mu_u;        Real v_tmp = v[i] - mu_v;        Qu = Qu + (i*u_tmp*u_tmp)/(i+1);        Qv = Qv + (i*v_tmp*v_tmp)/(i+1);        cov += i*u_tmp*v_tmp/(i+1);        mu_u = mu_u + u_tmp/(i+1);        mu_v = mu_v + v_tmp/(i+1);    }    // If both datasets are constant, then they are perfectly correlated.    if (Qu == 0 && Qv == 0)    {        return Real(1);    }    // If one dataset is constant and the other isn't, then they have no correlation:    if (Qu == 0 || Qv == 0)    {        return Real(0);    }    // Make sure rho in [-1, 1], even in the presence of numerical noise.    Real rho = cov/sqrt(Qu*Qv);    if (rho > 1) {        rho = 1;    }    if (rho < -1) {        rho = -1;    }    return rho;}}}}#endif
 |