| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 | ////  Copyright (c) 2000-2002//  Joerg Walter, Mathias Koch////  Distributed under the Boost Software License, Version 1.0. (See//  accompanying file LICENSE_1_0.txt or copy at//  http://www.boost.org/LICENSE_1_0.txt)////  The authors gratefully acknowledge the support of//  GeNeSys mbH & Co. KG in producing this work.//#ifndef _BOOST_UBLAS_OPERATION_BLOCKED_#define _BOOST_UBLAS_OPERATION_BLOCKED_#include <boost/numeric/ublas/traits.hpp>#include <boost/numeric/ublas/detail/vector_assign.hpp> // indexing_vector_assign#include <boost/numeric/ublas/detail/matrix_assign.hpp> // indexing_matrix_assignnamespace boost { namespace numeric { namespace ublas {    template<class V, typename V::size_type BS, class E1, class E2>    BOOST_UBLAS_INLINE    V    block_prod (const matrix_expression<E1> &e1,                const vector_expression<E2> &e2) {        typedef V vector_type;        typedef const E1 expression1_type;        typedef const E2 expression2_type;        typedef typename V::size_type size_type;        typedef typename V::value_type value_type;        const size_type block_size = BS;        V v (e1 ().size1 ());#if BOOST_UBLAS_TYPE_CHECK        vector<value_type> cv (v.size ());        typedef typename type_traits<value_type>::real_type real_type;        real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));        indexing_vector_assign<scalar_assign> (cv, prod (e1, e2));#endif        size_type i_size = e1 ().size1 ();        size_type j_size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size ());        for (size_type i_begin = 0; i_begin < i_size; i_begin += block_size) {            size_type i_end = i_begin + (std::min) (i_size - i_begin, block_size);            // FIX: never ignore Martin Weiser's advice ;-(#ifdef BOOST_UBLAS_NO_CACHE            vector_range<vector_type> v_range (v, range (i_begin, i_end));#else            // vector<value_type, bounded_array<value_type, block_size> > v_range (i_end - i_begin);            vector<value_type> v_range (i_end - i_begin);#endif            v_range.assign (zero_vector<value_type> (i_end - i_begin));            for (size_type j_begin = 0; j_begin < j_size; j_begin += block_size) {                size_type j_end = j_begin + (std::min) (j_size - j_begin, block_size);#ifdef BOOST_UBLAS_NO_CACHE                const matrix_range<expression1_type> e1_range (e1 (), range (i_begin, i_end), range (j_begin, j_end));                const vector_range<expression2_type> e2_range (e2 (), range (j_begin, j_end));                v_range.plus_assign (prod (e1_range, e2_range));#else                // const matrix<value_type, row_major, bounded_array<value_type, block_size * block_size> > e1_range (project (e1 (), range (i_begin, i_end), range (j_begin, j_end)));                // const vector<value_type, bounded_array<value_type, block_size> > e2_range (project (e2 (), range (j_begin, j_end)));                const matrix<value_type, row_major> e1_range (project (e1 (), range (i_begin, i_end), range (j_begin, j_end)));                const vector<value_type> e2_range (project (e2 (), range (j_begin, j_end)));                v_range.plus_assign (prod (e1_range, e2_range));#endif            }#ifndef BOOST_UBLAS_NO_CACHE            project (v, range (i_begin, i_end)).assign (v_range);#endif        }#if BOOST_UBLAS_TYPE_CHECK        BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());#endif        return v;    }    template<class V, typename V::size_type BS, class E1, class E2>    BOOST_UBLAS_INLINE    V    block_prod (const vector_expression<E1> &e1,                const matrix_expression<E2> &e2) {        typedef V vector_type;        typedef const E1 expression1_type;        typedef const E2 expression2_type;        typedef typename V::size_type size_type;        typedef typename V::value_type value_type;        const size_type block_size = BS;        V v (e2 ().size2 ());#if BOOST_UBLAS_TYPE_CHECK        vector<value_type> cv (v.size ());        typedef typename type_traits<value_type>::real_type real_type;        real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));        indexing_vector_assign<scalar_assign> (cv, prod (e1, e2));#endif        size_type i_size = BOOST_UBLAS_SAME (e1 ().size (), e2 ().size1 ());        size_type j_size = e2 ().size2 ();        for (size_type j_begin = 0; j_begin < j_size; j_begin += block_size) {            size_type j_end = j_begin + (std::min) (j_size - j_begin, block_size);            // FIX: never ignore Martin Weiser's advice ;-(#ifdef BOOST_UBLAS_NO_CACHE            vector_range<vector_type> v_range (v, range (j_begin, j_end));#else            // vector<value_type, bounded_array<value_type, block_size> > v_range (j_end - j_begin);            vector<value_type> v_range (j_end - j_begin);#endif            v_range.assign (zero_vector<value_type> (j_end - j_begin));            for (size_type i_begin = 0; i_begin < i_size; i_begin += block_size) {                size_type i_end = i_begin + (std::min) (i_size - i_begin, block_size);#ifdef BOOST_UBLAS_NO_CACHE                const vector_range<expression1_type> e1_range (e1 (), range (i_begin, i_end));                const matrix_range<expression2_type> e2_range (e2 (), range (i_begin, i_end), range (j_begin, j_end));#else                // const vector<value_type, bounded_array<value_type, block_size> > e1_range (project (e1 (), range (i_begin, i_end)));                // const matrix<value_type, column_major, bounded_array<value_type, block_size * block_size> > e2_range (project (e2 (), range (i_begin, i_end), range (j_begin, j_end)));                const vector<value_type> e1_range (project (e1 (), range (i_begin, i_end)));                const matrix<value_type, column_major> e2_range (project (e2 (), range (i_begin, i_end), range (j_begin, j_end)));#endif                v_range.plus_assign (prod (e1_range, e2_range));            }#ifndef BOOST_UBLAS_NO_CACHE            project (v, range (j_begin, j_end)).assign (v_range);#endif        }#if BOOST_UBLAS_TYPE_CHECK        BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());#endif        return v;    }    template<class M, typename M::size_type BS, class E1, class E2>    BOOST_UBLAS_INLINE    M    block_prod (const matrix_expression<E1> &e1,                const matrix_expression<E2> &e2,                row_major_tag) {        typedef M matrix_type;        typedef const E1 expression1_type;        typedef const E2 expression2_type;        typedef typename M::size_type size_type;        typedef typename M::value_type value_type;        const size_type block_size = BS;        M m (e1 ().size1 (), e2 ().size2 ());#if BOOST_UBLAS_TYPE_CHECK        matrix<value_type, row_major> cm (m.size1 (), m.size2 ());        typedef typename type_traits<value_type>::real_type real_type;        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));        indexing_matrix_assign<scalar_assign> (cm, prod (e1, e2), row_major_tag ());        disable_type_check<bool>::value = true;#endif        size_type i_size = e1 ().size1 ();        size_type j_size = e2 ().size2 ();        size_type k_size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ());        for (size_type i_begin = 0; i_begin < i_size; i_begin += block_size) {            size_type i_end = i_begin + (std::min) (i_size - i_begin, block_size);            for (size_type j_begin = 0; j_begin < j_size; j_begin += block_size) {                size_type j_end = j_begin + (std::min) (j_size - j_begin, block_size);                // FIX: never ignore Martin Weiser's advice ;-(#ifdef BOOST_UBLAS_NO_CACHE                matrix_range<matrix_type> m_range (m, range (i_begin, i_end), range (j_begin, j_end));#else                // matrix<value_type, row_major, bounded_array<value_type, block_size * block_size> > m_range (i_end - i_begin, j_end - j_begin);                matrix<value_type, row_major> m_range (i_end - i_begin, j_end - j_begin);#endif                m_range.assign (zero_matrix<value_type> (i_end - i_begin, j_end - j_begin));                for (size_type k_begin = 0; k_begin < k_size; k_begin += block_size) {                    size_type k_end = k_begin + (std::min) (k_size - k_begin, block_size);#ifdef BOOST_UBLAS_NO_CACHE                    const matrix_range<expression1_type> e1_range (e1 (), range (i_begin, i_end), range (k_begin, k_end));                    const matrix_range<expression2_type> e2_range (e2 (), range (k_begin, k_end), range (j_begin, j_end));#else                    // const matrix<value_type, row_major, bounded_array<value_type, block_size * block_size> > e1_range (project (e1 (), range (i_begin, i_end), range (k_begin, k_end)));                    // const matrix<value_type, column_major, bounded_array<value_type, block_size * block_size> > e2_range (project (e2 (), range (k_begin, k_end), range (j_begin, j_end)));                    const matrix<value_type, row_major> e1_range (project (e1 (), range (i_begin, i_end), range (k_begin, k_end)));                    const matrix<value_type, column_major> e2_range (project (e2 (), range (k_begin, k_end), range (j_begin, j_end)));#endif                    m_range.plus_assign (prod (e1_range, e2_range));                }#ifndef BOOST_UBLAS_NO_CACHE                project (m, range (i_begin, i_end), range (j_begin, j_end)).assign (m_range);#endif            }        }#if BOOST_UBLAS_TYPE_CHECK        disable_type_check<bool>::value = false;        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());#endif        return m;    }    template<class M, typename M::size_type BS, class E1, class E2>    BOOST_UBLAS_INLINE    M    block_prod (const matrix_expression<E1> &e1,                const matrix_expression<E2> &e2,                column_major_tag) {        typedef M matrix_type;        typedef const E1 expression1_type;        typedef const E2 expression2_type;        typedef typename M::size_type size_type;        typedef typename M::value_type value_type;        const size_type block_size = BS;        M m (e1 ().size1 (), e2 ().size2 ());#if BOOST_UBLAS_TYPE_CHECK        matrix<value_type, column_major> cm (m.size1 (), m.size2 ());        typedef typename type_traits<value_type>::real_type real_type;        real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));        indexing_matrix_assign<scalar_assign> (cm, prod (e1, e2), column_major_tag ());        disable_type_check<bool>::value = true;#endif        size_type i_size = e1 ().size1 ();        size_type j_size = e2 ().size2 ();        size_type k_size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ());        for (size_type j_begin = 0; j_begin < j_size; j_begin += block_size) {            size_type j_end = j_begin + (std::min) (j_size - j_begin, block_size);            for (size_type i_begin = 0; i_begin < i_size; i_begin += block_size) {                size_type i_end = i_begin + (std::min) (i_size - i_begin, block_size);                // FIX: never ignore Martin Weiser's advice ;-(#ifdef BOOST_UBLAS_NO_CACHE                matrix_range<matrix_type> m_range (m, range (i_begin, i_end), range (j_begin, j_end));#else                // matrix<value_type, column_major, bounded_array<value_type, block_size * block_size> > m_range (i_end - i_begin, j_end - j_begin);                matrix<value_type, column_major> m_range (i_end - i_begin, j_end - j_begin);#endif                m_range.assign (zero_matrix<value_type> (i_end - i_begin, j_end - j_begin));                for (size_type k_begin = 0; k_begin < k_size; k_begin += block_size) {                    size_type k_end = k_begin + (std::min) (k_size - k_begin, block_size);#ifdef BOOST_UBLAS_NO_CACHE                    const matrix_range<expression1_type> e1_range (e1 (), range (i_begin, i_end), range (k_begin, k_end));                    const matrix_range<expression2_type> e2_range (e2 (), range (k_begin, k_end), range (j_begin, j_end));#else                    // const matrix<value_type, row_major, bounded_array<value_type, block_size * block_size> > e1_range (project (e1 (), range (i_begin, i_end), range (k_begin, k_end)));                    // const matrix<value_type, column_major, bounded_array<value_type, block_size * block_size> > e2_range (project (e2 (), range (k_begin, k_end), range (j_begin, j_end)));                    const matrix<value_type, row_major> e1_range (project (e1 (), range (i_begin, i_end), range (k_begin, k_end)));                    const matrix<value_type, column_major> e2_range (project (e2 (), range (k_begin, k_end), range (j_begin, j_end)));#endif                    m_range.plus_assign (prod (e1_range, e2_range));                }#ifndef BOOST_UBLAS_NO_CACHE                project (m, range (i_begin, i_end), range (j_begin, j_end)).assign (m_range);#endif            }        }#if BOOST_UBLAS_TYPE_CHECK        disable_type_check<bool>::value = false;        BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());#endif        return m;    }    // Dispatcher    template<class M, typename M::size_type BS, class E1, class E2>    BOOST_UBLAS_INLINE    M    block_prod (const matrix_expression<E1> &e1,                const matrix_expression<E2> &e2) {        typedef typename M::orientation_category orientation_category;        return block_prod<M, BS> (e1, e2, orientation_category ());    }}}}#endif
 |