| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258 | ////////////////////////////////////////////////////////////////////////////////// \file traits.hpp/// Contains definitions for child\<\>, child_c\<\>, left\<\>,/// right\<\>, tag_of\<\>, and the helper functions child(), child_c(),/// value(), left() and right().////  Copyright 2008 Eric Niebler. Distributed under the Boost//  Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_PROTO_ARG_TRAITS_HPP_EAN_04_01_2005#define BOOST_PROTO_ARG_TRAITS_HPP_EAN_04_01_2005#include <boost/config.hpp>#include <boost/detail/workaround.hpp>#include <boost/preprocessor/iteration/iterate.hpp>#include <boost/preprocessor/repetition/enum.hpp>#include <boost/preprocessor/repetition/enum_params.hpp>#include <boost/preprocessor/repetition/enum_trailing_params.hpp>#include <boost/preprocessor/repetition/repeat.hpp>#include <boost/preprocessor/repetition/repeat_from_to.hpp>#include <boost/preprocessor/facilities/intercept.hpp>#include <boost/preprocessor/arithmetic/sub.hpp>#include <boost/static_assert.hpp>#include <boost/mpl/bool.hpp>#include <boost/proto/detail/template_arity.hpp>#include <boost/type_traits/is_pod.hpp>#include <boost/type_traits/is_same.hpp>#include <boost/type_traits/add_const.hpp>#include <boost/proto/proto_fwd.hpp>#include <boost/proto/args.hpp>#include <boost/proto/domain.hpp>#include <boost/proto/transform/pass_through.hpp>#if defined(_MSC_VER)# pragma warning(push)# if BOOST_WORKAROUND( BOOST_MSVC, >= 1400 )#  pragma warning(disable: 4180) // warning C4180: qualifier applied to function type has no meaning; ignored# endif# pragma warning(disable : 4714) // function 'xxx' marked as __forceinline not inlined#endifnamespace boost { namespace proto{    namespace detail    {        template<typename T, typename Void = void>        struct if_vararg        {};        template<typename T>        struct if_vararg<T, typename T::proto_is_vararg_>          : T        {};        template<typename T, typename Void = void>        struct is_callable2_          : mpl::false_        {};        template<typename T>        struct is_callable2_<T, typename T::proto_is_callable_>          : mpl::true_        {};        template<typename T BOOST_PROTO_TEMPLATE_ARITY_PARAM(long Arity = boost::proto::detail::template_arity<T>::value)>        struct is_callable_          : is_callable2_<T>        {};    }    /// \brief Boolean metafunction which detects whether a type is    /// a callable function object type or not.    ///    /// <tt>is_callable\<\></tt> is used by the <tt>when\<\></tt> transform    /// to determine whether a function type <tt>R(A1,A2,...AN)</tt> is a    /// callable transform or an object transform. (The former are evaluated    /// using <tt>call\<\></tt> and the later with <tt>make\<\></tt>.) If    /// <tt>is_callable\<R\>::value</tt> is \c true, the function type is    /// a callable transform; otherwise, it is an object transform.    ///    /// Unless specialized for a type \c T, <tt>is_callable\<T\>::value</tt>    /// is computed as follows:    ///    /// \li If \c T is a template type <tt>X\<Y0,Y1,...YN\></tt>, where all \c Yx    /// are types for \c x in <tt>[0,N]</tt>, <tt>is_callable\<T\>::value</tt>    /// is <tt>is_same\<YN, proto::callable\>::value</tt>.    /// \li If \c T has a nested type \c proto_is_callable_ that is a typedef    /// for \c void, <tt>is_callable\<T\>::value</tt> is \c true. (Note: this is    /// the case for any type that derives from \c proto::callable.)    /// \li Otherwise, <tt>is_callable\<T\>::value</tt> is \c false.    template<typename T>    struct is_callable      : proto::detail::is_callable_<T>    {};    /// INTERNAL ONLY    ///    template<>    struct is_callable<proto::_>      : mpl::true_    {};    /// INTERNAL ONLY    ///    template<>    struct is_callable<proto::callable>      : mpl::false_    {};    /// INTERNAL ONLY    ///    template<typename PrimitiveTransform, typename X>    struct is_callable<proto::transform<PrimitiveTransform, X> >      : mpl::false_    {};    #if BOOST_WORKAROUND(__GNUC__, == 3) || (BOOST_WORKAROUND(__GNUC__, == 4) && __GNUC_MINOR__ == 0)    // work around GCC bug    template<typename Tag, typename Args, long N>    struct is_callable<proto::expr<Tag, Args, N> >      : mpl::false_    {};    // work around GCC bug    template<typename Tag, typename Args, long N>    struct is_callable<proto::basic_expr<Tag, Args, N> >      : mpl::false_    {};    #endif    namespace detail    {        template<typename T, typename Void /*= void*/>        struct is_transform_          : mpl::false_        {};        template<typename T>        struct is_transform_<T, typename T::proto_is_transform_>          : mpl::true_        {};    }    /// \brief Boolean metafunction which detects whether a type is    /// a PrimitiveTransform type or not.    ///    /// <tt>is_transform\<\></tt> is used by the <tt>call\<\></tt> transform    /// to determine whether the function types <tt>R()</tt>, <tt>R(A1)</tt>,    /// and <tt>R(A1, A2)</tt> should be passed the expression, state and data    /// parameters (as needed).    ///    /// Unless specialized for a type \c T, <tt>is_transform\<T\>::value</tt>    /// is computed as follows:    ///    /// \li If \c T has a nested type \c proto_is_transform_ that is a typedef    /// for \c void, <tt>is_transform\<T\>::value</tt> is \c true. (Note: this is    /// the case for any type that derives from an instantiation of \c proto::transform.)    /// \li Otherwise, <tt>is_transform\<T\>::value</tt> is \c false.    template<typename T>    struct is_transform      : proto::detail::is_transform_<T>    {};    namespace detail    {        template<typename T, typename Void /*= void*/>        struct is_aggregate_          : is_pod<T>        {};        template<typename Tag, typename Args, long N>        struct is_aggregate_<proto::expr<Tag, Args, N>, void>          : mpl::true_        {};        template<typename Tag, typename Args, long N>        struct is_aggregate_<proto::basic_expr<Tag, Args, N>, void>          : mpl::true_        {};        template<typename T>        struct is_aggregate_<T, typename T::proto_is_aggregate_>          : mpl::true_        {};    }    /// \brief A Boolean metafunction that indicates whether a type requires    /// aggregate initialization.    ///    /// <tt>is_aggregate\<\></tt> is used by the <tt>make\<\></tt> transform    /// to determine how to construct an object of some type \c T, given some    /// initialization arguments <tt>a0,a1,...aN</tt>.    /// If <tt>is_aggregate\<T\>::value</tt> is \c true, then an object of    /// type T will be initialized as <tt>T t = {a0,a1,...aN};</tt>. Otherwise,    /// it will be initialized as <tt>T t(a0,a1,...aN)</tt>.    template<typename T>    struct is_aggregate      : proto::detail::is_aggregate_<T>    {};    /// \brief A Boolean metafunction that indicates whether a given    /// type \c T is a Proto expression type.    ///    /// If \c T has a nested type \c proto_is_expr_ that is a typedef    /// for \c void, <tt>is_expr\<T\>::value</tt> is \c true. (Note, this    /// is the case for <tt>proto::expr\<\></tt>, any type that is derived    /// from <tt>proto::extends\<\></tt> or that uses the    /// <tt>BOOST_PROTO_BASIC_EXTENDS()</tt> macro.) Otherwise,    /// <tt>is_expr\<T\>::value</tt> is \c false.    template<typename T, typename Void /* = void*/>    struct is_expr      : mpl::false_    {};    /// \brief A Boolean metafunction that indicates whether a given    /// type \c T is a Proto expression type.    ///    /// If \c T has a nested type \c proto_is_expr_ that is a typedef    /// for \c void, <tt>is_expr\<T\>::value</tt> is \c true. (Note, this    /// is the case for <tt>proto::expr\<\></tt>, any type that is derived    /// from <tt>proto::extends\<\></tt> or that uses the    /// <tt>BOOST_PROTO_BASIC_EXTENDS()</tt> macro.) Otherwise,    /// <tt>is_expr\<T\>::value</tt> is \c false.    template<typename T>    struct is_expr<T, typename T::proto_is_expr_>      : mpl::true_    {};                template<typename T>    struct is_expr<T &, void>      : is_expr<T>    {};    /// \brief A metafunction that returns the tag type of a    /// Proto expression.    template<typename Expr>    struct tag_of    {        typedef typename Expr::proto_tag type;    };    template<typename Expr>    struct tag_of<Expr &>    {        typedef typename Expr::proto_tag type;    };    /// \brief A metafunction that returns the arity of a    /// Proto expression.    template<typename Expr>    struct arity_of      : Expr::proto_arity    {};    template<typename Expr>    struct arity_of<Expr &>      : Expr::proto_arity    {};    namespace result_of    {        /// \brief A metafunction that computes the return type of the \c as_expr()        /// function.        template<typename T, typename Domain /*= default_domain*/>        struct as_expr        {            typedef typename Domain::template as_expr<T>::result_type type;        };        /// \brief A metafunction that computes the return type of the \c as_child()        /// function.        template<typename T, typename Domain /*= default_domain*/>        struct as_child        {            typedef typename Domain::template as_child<T>::result_type type;        };        /// \brief A metafunction that returns the type of the Nth child        /// of a Proto expression, where N is an MPL Integral Constant.        ///        /// <tt>result_of::child\<Expr, N\></tt> is equivalent to        /// <tt>result_of::child_c\<Expr, N::value\></tt>.        template<typename Expr, typename N /* = mpl::long_<0>*/>        struct child          : child_c<Expr, N::value>        {};        /// \brief A metafunction that returns the type of the value        /// of a terminal Proto expression.        ///        template<typename Expr>        struct value        {            /// Verify that we are actually operating on a terminal            BOOST_STATIC_ASSERT(0 == Expr::proto_arity_c);            /// The raw type of the Nth child as it is stored within            /// \c Expr. This may be a value or a reference            typedef typename Expr::proto_child0 value_type;            /// The "value" type of the child, suitable for storage by value,            /// computed as follows:            /// \li <tt>T const(&)[N]</tt> becomes <tt>T[N]</tt>            /// \li <tt>T[N]</tt> becomes <tt>T[N]</tt>            /// \li <tt>T(&)[N]</tt> becomes <tt>T[N]</tt>            /// \li <tt>R(&)(A0,...)</tt> becomes <tt>R(&)(A0,...)</tt>            /// \li <tt>T const &</tt> becomes <tt>T</tt>            /// \li <tt>T &</tt> becomes <tt>T</tt>            /// \li <tt>T</tt> becomes <tt>T</tt>            typedef typename detail::term_traits<typename Expr::proto_child0>::value_type type;        };        template<typename Expr>        struct value<Expr &>        {            /// Verify that we are actually operating on a terminal            BOOST_STATIC_ASSERT(0 == Expr::proto_arity_c);            /// The raw type of the Nth child as it is stored within            /// \c Expr. This may be a value or a reference            typedef typename Expr::proto_child0 value_type;            /// The "reference" type of the child, suitable for storage by            /// reference, computed as follows:            /// \li <tt>T const(&)[N]</tt> becomes <tt>T const(&)[N]</tt>            /// \li <tt>T[N]</tt> becomes <tt>T(&)[N]</tt>            /// \li <tt>T(&)[N]</tt> becomes <tt>T(&)[N]</tt>            /// \li <tt>R(&)(A0,...)</tt> becomes <tt>R(&)(A0,...)</tt>            /// \li <tt>T const &</tt> becomes <tt>T const &</tt>            /// \li <tt>T &</tt> becomes <tt>T &</tt>            /// \li <tt>T</tt> becomes <tt>T &</tt>            typedef typename detail::term_traits<typename Expr::proto_child0>::reference type;        };        template<typename Expr>        struct value<Expr const &>        {            /// Verify that we are actually operating on a terminal            BOOST_STATIC_ASSERT(0 == Expr::proto_arity_c);            /// The raw type of the Nth child as it is stored within            /// \c Expr. This may be a value or a reference            typedef typename Expr::proto_child0 value_type;            /// The "const reference" type of the child, suitable for storage by            /// const reference, computed as follows:            /// \li <tt>T const(&)[N]</tt> becomes <tt>T const(&)[N]</tt>            /// \li <tt>T[N]</tt> becomes <tt>T const(&)[N]</tt>            /// \li <tt>T(&)[N]</tt> becomes <tt>T(&)[N]</tt>            /// \li <tt>R(&)(A0,...)</tt> becomes <tt>R(&)(A0,...)</tt>            /// \li <tt>T const &</tt> becomes <tt>T const &</tt>            /// \li <tt>T &</tt> becomes <tt>T &</tt>            /// \li <tt>T</tt> becomes <tt>T const &</tt>            typedef typename detail::term_traits<typename Expr::proto_child0>::const_reference type;        };        /// \brief A metafunction that returns the type of the left child        /// of a binary Proto expression.        ///        /// <tt>result_of::left\<Expr\></tt> is equivalent to        /// <tt>result_of::child_c\<Expr, 0\></tt>.        template<typename Expr>        struct left          : child_c<Expr, 0>        {};        /// \brief A metafunction that returns the type of the right child        /// of a binary Proto expression.        ///        /// <tt>result_of::right\<Expr\></tt> is equivalent to        /// <tt>result_of::child_c\<Expr, 1\></tt>.        template<typename Expr>        struct right          : child_c<Expr, 1>        {};    } // namespace result_of    /// \brief A metafunction for generating terminal expression types,    /// a grammar element for matching terminal expressions, and a    /// PrimitiveTransform that returns the current expression unchanged.    template<typename T>    struct terminal      : proto::transform<terminal<T>, int>    {        typedef proto::expr<proto::tag::terminal, term<T>, 0> type;        typedef proto::basic_expr<proto::tag::terminal, term<T>, 0> proto_grammar;        template<typename Expr, typename State, typename Data>        struct impl : transform_impl<Expr, State, Data>        {            typedef Expr result_type;            /// \param e The current expression            /// \pre <tt>matches\<Expr, terminal\<T\> \>::value</tt> is \c true.            /// \return \c e            /// \throw nothrow            BOOST_FORCEINLINE            BOOST_PROTO_RETURN_TYPE_STRICT_LOOSE(result_type, typename impl::expr_param)            operator ()(                typename impl::expr_param e              , typename impl::state_param              , typename impl::data_param            ) const            {                return e;            }        };        /// INTERNAL ONLY        typedef proto::tag::terminal proto_tag;        /// INTERNAL ONLY        typedef T proto_child0;    };    /// \brief A metafunction for generating ternary conditional expression types,    /// a grammar element for matching ternary conditional expressions, and a    /// PrimitiveTransform that dispatches to the <tt>pass_through\<\></tt>    /// transform.    template<typename T, typename U, typename V>    struct if_else_      : proto::transform<if_else_<T, U, V>, int>    {        typedef proto::expr<proto::tag::if_else_, list3<T, U, V>, 3> type;        typedef proto::basic_expr<proto::tag::if_else_, list3<T, U, V>, 3> proto_grammar;        template<typename Expr, typename State, typename Data>        struct impl          : detail::pass_through_impl<if_else_, deduce_domain, Expr, State, Data>        {};        /// INTERNAL ONLY        typedef proto::tag::if_else_ proto_tag;        /// INTERNAL ONLY        typedef T proto_child0;        /// INTERNAL ONLY        typedef U proto_child1;        /// INTERNAL ONLY        typedef V proto_child2;    };    /// \brief A metafunction for generating nullary expression types with a    /// specified tag type,    /// a grammar element for matching nullary expressions, and a    /// PrimitiveTransform that returns the current expression unchanged.    ///    /// Use <tt>nullary_expr\<_, _\></tt> as a grammar element to match any    /// nullary expression.    template<typename Tag, typename T>    struct nullary_expr      : proto::transform<nullary_expr<Tag, T>, int>    {        typedef proto::expr<Tag, term<T>, 0> type;        typedef proto::basic_expr<Tag, term<T>, 0> proto_grammar;        template<typename Expr, typename State, typename Data>        struct impl : transform_impl<Expr, State, Data>        {            typedef Expr result_type;            /// \param e The current expression            /// \pre <tt>matches\<Expr, nullary_expr\<Tag, T\> \>::value</tt> is \c true.            /// \return \c e            /// \throw nothrow            BOOST_FORCEINLINE            BOOST_PROTO_RETURN_TYPE_STRICT_LOOSE(result_type, typename impl::expr_param)            operator ()(                typename impl::expr_param e              , typename impl::state_param              , typename impl::data_param            ) const            {                return e;            }        };        /// INTERNAL ONLY        typedef Tag proto_tag;        /// INTERNAL ONLY        typedef T proto_child0;    };    /// \brief A metafunction for generating unary expression types with a    /// specified tag type,    /// a grammar element for matching unary expressions, and a    /// PrimitiveTransform that dispatches to the <tt>pass_through\<\></tt>    /// transform.    ///    /// Use <tt>unary_expr\<_, _\></tt> as a grammar element to match any    /// unary expression.    template<typename Tag, typename T>    struct unary_expr      : proto::transform<unary_expr<Tag, T>, int>    {        typedef proto::expr<Tag, list1<T>, 1> type;        typedef proto::basic_expr<Tag, list1<T>, 1> proto_grammar;        template<typename Expr, typename State, typename Data>        struct impl          : detail::pass_through_impl<unary_expr, deduce_domain, Expr, State, Data>        {};        /// INTERNAL ONLY        typedef Tag proto_tag;        /// INTERNAL ONLY        typedef T proto_child0;    };    /// \brief A metafunction for generating binary expression types with a    /// specified tag type,    /// a grammar element for matching binary expressions, and a    /// PrimitiveTransform that dispatches to the <tt>pass_through\<\></tt>    /// transform.    ///    /// Use <tt>binary_expr\<_, _, _\></tt> as a grammar element to match any    /// binary expression.    template<typename Tag, typename T, typename U>    struct binary_expr      : proto::transform<binary_expr<Tag, T, U>, int>    {        typedef proto::expr<Tag, list2<T, U>, 2> type;        typedef proto::basic_expr<Tag, list2<T, U>, 2> proto_grammar;        template<typename Expr, typename State, typename Data>        struct impl          : detail::pass_through_impl<binary_expr, deduce_domain, Expr, State, Data>        {};        /// INTERNAL ONLY        typedef Tag proto_tag;        /// INTERNAL ONLY        typedef T proto_child0;        /// INTERNAL ONLY        typedef U proto_child1;    };#define BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(Op)                                               \    template<typename T>                                                                        \    struct Op                                                                                   \      : proto::transform<Op<T>, int>                                                            \    {                                                                                           \        typedef proto::expr<proto::tag::Op, list1<T>, 1> type;                                  \        typedef proto::basic_expr<proto::tag::Op, list1<T>, 1> proto_grammar;                   \                                                                                                \        template<typename Expr, typename State, typename Data>                                  \        struct impl                                                                             \          : detail::pass_through_impl<Op, deduce_domain, Expr, State, Data>                     \        {};                                                                                     \                                                                                                \        typedef proto::tag::Op proto_tag;                                                       \        typedef T proto_child0;                                                                 \    };                                                                                          \    /**/#define BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(Op)                                              \    template<typename T, typename U>                                                            \    struct Op                                                                                   \      : proto::transform<Op<T, U>, int>                                                         \    {                                                                                           \        typedef proto::expr<proto::tag::Op, list2<T, U>, 2> type;                               \        typedef proto::basic_expr<proto::tag::Op, list2<T, U>, 2> proto_grammar;                \                                                                                                \        template<typename Expr, typename State, typename Data>                                  \        struct impl                                                                             \          : detail::pass_through_impl<Op, deduce_domain, Expr, State, Data>                     \        {};                                                                                     \                                                                                                \        typedef proto::tag::Op proto_tag;                                                       \        typedef T proto_child0;                                                                 \        typedef U proto_child1;                                                                 \    };                                                                                          \    /**/    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(unary_plus)    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(negate)    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(dereference)    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(complement)    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(address_of)    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(logical_not)    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(pre_inc)    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(pre_dec)    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(post_inc)    BOOST_PROTO_DEFINE_UNARY_METAFUNCTION(post_dec)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(shift_left)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(shift_right)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(multiplies)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(divides)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(modulus)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(plus)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(minus)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(less)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(greater)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(less_equal)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(greater_equal)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(equal_to)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(not_equal_to)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(logical_or)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(logical_and)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_or)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_and)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_xor)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(comma)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(mem_ptr)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(assign)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(shift_left_assign)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(shift_right_assign)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(multiplies_assign)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(divides_assign)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(modulus_assign)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(plus_assign)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(minus_assign)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_or_assign)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_and_assign)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(bitwise_xor_assign)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(subscript)    BOOST_PROTO_DEFINE_BINARY_METAFUNCTION(member)    #undef BOOST_PROTO_DEFINE_UNARY_METAFUNCTION    #undef BOOST_PROTO_DEFINE_BINARY_METAFUNCTION    #include <boost/proto/detail/traits.hpp>    namespace functional    {        /// \brief A callable PolymorphicFunctionObject that is        /// equivalent to the \c as_expr() function.        template<typename Domain   /* = default_domain*/>        struct as_expr        {            BOOST_PROTO_CALLABLE()            template<typename Sig>            struct result;            template<typename This, typename T>            struct result<This(T)>            {                typedef typename Domain::template as_expr<T>::result_type type;            };            template<typename This, typename T>            struct result<This(T &)>            {                typedef typename Domain::template as_expr<T>::result_type type;            };            /// \brief Wrap an object in a Proto terminal if it isn't a            /// Proto expression already.            /// \param t The object to wrap.            /// \return <tt>proto::as_expr\<Domain\>(t)</tt>            template<typename T>            BOOST_FORCEINLINE            typename add_const<typename result<as_expr(T &)>::type>::type            operator ()(T &t) const            {                return typename Domain::template as_expr<T>()(t);            }            /// \overload            ///            template<typename T>            BOOST_FORCEINLINE            typename add_const<typename result<as_expr(T const &)>::type>::type            operator ()(T const &t) const            {                return typename Domain::template as_expr<T const>()(t);            }            #if BOOST_WORKAROUND(BOOST_MSVC, == 1310)            template<typename T, std::size_t N_>            BOOST_FORCEINLINE            typename add_const<typename result<as_expr(T (&)[N_])>::type>::type            operator ()(T (&t)[N_]) const            {                return typename Domain::template as_expr<T[N_]>()(t);            }            template<typename T, std::size_t N_>            BOOST_FORCEINLINE            typename add_const<typename result<as_expr(T const (&)[N_])>::type>::type            operator ()(T const (&t)[N_]) const            {                return typename Domain::template as_expr<T const[N_]>()(t);            }            #endif        };        /// \brief A callable PolymorphicFunctionObject that is        /// equivalent to the \c as_child() function.        template<typename Domain   /* = default_domain*/>        struct as_child        {            BOOST_PROTO_CALLABLE()            template<typename Sig>            struct result;            template<typename This, typename T>            struct result<This(T)>            {                typedef typename Domain::template as_child<T>::result_type type;            };            template<typename This, typename T>            struct result<This(T &)>            {                typedef typename Domain::template as_child<T>::result_type type;            };            /// \brief Wrap an object in a Proto terminal if it isn't a            /// Proto expression already.            /// \param t The object to wrap.            /// \return <tt>proto::as_child\<Domain\>(t)</tt>            template<typename T>            BOOST_FORCEINLINE            typename add_const<typename result<as_child(T &)>::type>::type            operator ()(T &t) const            {                return typename Domain::template as_child<T>()(t);            }            /// \overload            ///            template<typename T>            BOOST_FORCEINLINE            typename add_const<typename result<as_child(T const &)>::type>::type            operator ()(T const &t) const            {                return typename Domain::template as_child<T const>()(t);            }        };        /// \brief A callable PolymorphicFunctionObject that is        /// equivalent to the \c child_c() function.        template<long N>        struct child_c        {            BOOST_PROTO_CALLABLE()            template<typename Sig>            struct result;            template<typename This, typename Expr>            struct result<This(Expr)>            {                typedef typename result_of::child_c<Expr, N>::type type;            };            /// \brief Return the Nth child of the given expression.            /// \param expr The expression node.            /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true            /// \pre <tt>N \< Expr::proto_arity::value</tt>            /// \return <tt>proto::child_c\<N\>(expr)</tt>            /// \throw nothrow            template<typename Expr>            BOOST_FORCEINLINE            typename result_of::child_c<Expr &, N>::type            operator ()(Expr &e) const            {                return result_of::child_c<Expr &, N>::call(e);            }            /// \overload            ///            template<typename Expr>            BOOST_FORCEINLINE            typename result_of::child_c<Expr const &, N>::type            operator ()(Expr const &e) const            {                return result_of::child_c<Expr const &, N>::call(e);            }        };        /// \brief A callable PolymorphicFunctionObject that is        /// equivalent to the \c child() function.        ///        /// A callable PolymorphicFunctionObject that is        /// equivalent to the \c child() function. \c N is required        /// to be an MPL Integral Constant.        template<typename N /* = mpl::long_<0>*/>        struct child        {            BOOST_PROTO_CALLABLE()            template<typename Sig>            struct result;            template<typename This, typename Expr>            struct result<This(Expr)>            {                typedef typename result_of::child<Expr, N>::type type;            };            /// \brief Return the Nth child of the given expression.            /// \param expr The expression node.            /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true            /// \pre <tt>N::value \< Expr::proto_arity::value</tt>            /// \return <tt>proto::child\<N\>(expr)</tt>            /// \throw nothrow            template<typename Expr>            BOOST_FORCEINLINE            typename result_of::child<Expr &, N>::type            operator ()(Expr &e) const            {                return result_of::child<Expr &, N>::call(e);            }            /// \overload            ///            template<typename Expr>            BOOST_FORCEINLINE            typename result_of::child<Expr const &, N>::type            operator ()(Expr const &e) const            {                return result_of::child<Expr const &, N>::call(e);            }        };        /// \brief A callable PolymorphicFunctionObject that is        /// equivalent to the \c value() function.        struct value        {            BOOST_PROTO_CALLABLE()            template<typename Sig>            struct result;            template<typename This, typename Expr>            struct result<This(Expr)>            {                typedef typename result_of::value<Expr>::type type;            };            /// \brief Return the value of the given terminal expression.            /// \param expr The terminal expression node.            /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true            /// \pre <tt>0 == Expr::proto_arity::value</tt>            /// \return <tt>proto::value(expr)</tt>            /// \throw nothrow            template<typename Expr>            BOOST_FORCEINLINE            typename result_of::value<Expr &>::type            operator ()(Expr &e) const            {                return e.proto_base().child0;            }            /// \overload            ///            template<typename Expr>            BOOST_FORCEINLINE            typename result_of::value<Expr const &>::type            operator ()(Expr const &e) const            {                return e.proto_base().child0;            }        };        /// \brief A callable PolymorphicFunctionObject that is        /// equivalent to the \c left() function.        struct left        {            BOOST_PROTO_CALLABLE()            template<typename Sig>            struct result;            template<typename This, typename Expr>            struct result<This(Expr)>            {                typedef typename result_of::left<Expr>::type type;            };            /// \brief Return the left child of the given binary expression.            /// \param expr The expression node.            /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true            /// \pre <tt>2 == Expr::proto_arity::value</tt>            /// \return <tt>proto::left(expr)</tt>            /// \throw nothrow            template<typename Expr>            BOOST_FORCEINLINE            typename result_of::left<Expr &>::type            operator ()(Expr &e) const            {                return e.proto_base().child0;            }            /// \overload            ///            template<typename Expr>            BOOST_FORCEINLINE            typename result_of::left<Expr const &>::type            operator ()(Expr const &e) const            {                return e.proto_base().child0;            }        };        /// \brief A callable PolymorphicFunctionObject that is        /// equivalent to the \c right() function.        struct right        {            BOOST_PROTO_CALLABLE()            template<typename Sig>            struct result;            template<typename This, typename Expr>            struct result<This(Expr)>            {                typedef typename result_of::right<Expr>::type type;            };            /// \brief Return the right child of the given binary expression.            /// \param expr The expression node.            /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true            /// \pre <tt>2 == Expr::proto_arity::value</tt>            /// \return <tt>proto::right(expr)</tt>            /// \throw nothrow            template<typename Expr>            BOOST_FORCEINLINE            typename result_of::right<Expr &>::type            operator ()(Expr &e) const            {                return e.proto_base().child1;            }            template<typename Expr>            BOOST_FORCEINLINE            typename result_of::right<Expr const &>::type            operator ()(Expr const &e) const            {                return e.proto_base().child1;            }        };    }    /// \brief A function that wraps non-Proto expression types in Proto    /// terminals and leaves Proto expression types alone.    ///    /// The <tt>as_expr()</tt> function turns objects into Proto terminals if    /// they are not Proto expression types already. Non-Proto types are    /// held by value, if possible. Types which are already Proto types are    /// left alone and returned by reference.    ///    /// This function can be called either with an explicitly specified    /// \c Domain parameter (i.e., <tt>as_expr\<Domain\>(t)</tt>), or    /// without (i.e., <tt>as_expr(t)</tt>). If no domain is    /// specified, \c default_domain is assumed.    ///    /// If <tt>is_expr\<T\>::value</tt> is \c true, then the argument is    /// returned unmodified, by reference. Otherwise, the argument is wrapped    /// in a Proto terminal expression node according to the following rules.    /// If \c T is a function type, let \c A be <tt>T &</tt>. Otherwise, let    /// \c A be the type \c T stripped of cv-qualifiers. Then, \c as_expr()    /// returns <tt>Domain()(terminal\<A\>::type::make(t))</tt>.    ///    /// \param t The object to wrap.    template<typename T>    BOOST_FORCEINLINE    typename add_const<typename result_of::as_expr<T, default_domain>::type>::type    as_expr(T &t BOOST_PROTO_DISABLE_IF_IS_CONST(T) BOOST_PROTO_DISABLE_IF_IS_FUNCTION(T))    {        return default_domain::as_expr<T>()(t);    }    /// \overload    ///    template<typename T>    BOOST_FORCEINLINE    typename add_const<typename result_of::as_expr<T const, default_domain>::type>::type    as_expr(T const &t)    {        return default_domain::as_expr<T const>()(t);    }    /// \overload    ///    template<typename Domain, typename T>    BOOST_FORCEINLINE    typename add_const<typename result_of::as_expr<T, Domain>::type>::type    as_expr(T &t BOOST_PROTO_DISABLE_IF_IS_CONST(T) BOOST_PROTO_DISABLE_IF_IS_FUNCTION(T))    {        return typename Domain::template as_expr<T>()(t);    }    /// \overload    ///    template<typename Domain, typename T>    BOOST_FORCEINLINE    typename add_const<typename result_of::as_expr<T const, Domain>::type>::type    as_expr(T const &t)    {        return typename Domain::template as_expr<T const>()(t);    }    /// \brief A function that wraps non-Proto expression types in Proto    /// terminals (by reference) and returns Proto expression types by    /// reference    ///    /// The <tt>as_child()</tt> function turns objects into Proto terminals if    /// they are not Proto expression types already. Non-Proto types are    /// held by reference. Types which are already Proto types are simply    /// returned as-is.    ///    /// This function can be called either with an explicitly specified    /// \c Domain parameter (i.e., <tt>as_child\<Domain\>(t)</tt>), or    /// without (i.e., <tt>as_child(t)</tt>). If no domain is    /// specified, \c default_domain is assumed.    ///    /// If <tt>is_expr\<T\>::value</tt> is \c true, then the argument is    /// returned as-is. Otherwise, \c as_child() returns    /// <tt>Domain()(terminal\<T &\>::type::make(t))</tt>.    ///    /// \param t The object to wrap.    template<typename T>    BOOST_FORCEINLINE    typename add_const<typename result_of::as_child<T, default_domain>::type>::type    as_child(T &t BOOST_PROTO_DISABLE_IF_IS_CONST(T) BOOST_PROTO_DISABLE_IF_IS_FUNCTION(T))    {        return default_domain::as_child<T>()(t);    }    /// \overload    ///    template<typename T>    BOOST_FORCEINLINE    typename add_const<typename result_of::as_child<T const, default_domain>::type>::type    as_child(T const &t)    {        return default_domain::as_child<T const>()(t);    }    /// \overload    ///    template<typename Domain, typename T>    BOOST_FORCEINLINE    typename add_const<typename result_of::as_child<T, Domain>::type>::type    as_child(T &t BOOST_PROTO_DISABLE_IF_IS_CONST(T) BOOST_PROTO_DISABLE_IF_IS_FUNCTION(T))    {        return typename Domain::template as_child<T>()(t);    }    /// \overload    ///    template<typename Domain, typename T>    BOOST_FORCEINLINE    typename add_const<typename result_of::as_child<T const, Domain>::type>::type    as_child(T const &t)    {        return typename Domain::template as_child<T const>()(t);    }    /// \brief Return the Nth child of the specified Proto expression.    ///    /// Return the Nth child of the specified Proto expression. If    /// \c N is not specified, as in \c child(expr), then \c N is assumed    /// to be <tt>mpl::long_\<0\></tt>. The child is returned by    /// reference.    ///    /// \param expr The Proto expression.    /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true.    /// \pre \c N is an MPL Integral Constant.    /// \pre <tt>N::value \< Expr::proto_arity::value</tt>    /// \throw nothrow    /// \return A reference to the Nth child    template<typename N, typename Expr>    BOOST_FORCEINLINE    typename result_of::child<Expr &, N>::type    child(Expr &e BOOST_PROTO_DISABLE_IF_IS_CONST(Expr))    {        return result_of::child<Expr &, N>::call(e);    }    /// \overload    ///    template<typename N, typename Expr>    BOOST_FORCEINLINE    typename result_of::child<Expr const &, N>::type    child(Expr const &e)    {        return result_of::child<Expr const &, N>::call(e);    }    /// \overload    ///    template<typename Expr2>    BOOST_FORCEINLINE    typename detail::expr_traits<typename Expr2::proto_base_expr::proto_child0>::reference    child(Expr2 &expr2 BOOST_PROTO_DISABLE_IF_IS_CONST(Expr2))    {        return expr2.proto_base().child0;    }    /// \overload    ///    template<typename Expr2>    BOOST_FORCEINLINE    typename detail::expr_traits<typename Expr2::proto_base_expr::proto_child0>::const_reference    child(Expr2 const &expr2)    {        return expr2.proto_base().child0;    }    /// \brief Return the Nth child of the specified Proto expression.    ///    /// Return the Nth child of the specified Proto expression. The child    /// is returned by reference.    ///    /// \param expr The Proto expression.    /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true.    /// \pre <tt>N \< Expr::proto_arity::value</tt>    /// \throw nothrow    /// \return A reference to the Nth child    template<long N, typename Expr>    BOOST_FORCEINLINE    typename result_of::child_c<Expr &, N>::type    child_c(Expr &e BOOST_PROTO_DISABLE_IF_IS_CONST(Expr))    {        return result_of::child_c<Expr &, N>::call(e);    }    /// \overload    ///    template<long N, typename Expr>    BOOST_FORCEINLINE    typename result_of::child_c<Expr const &, N>::type    child_c(Expr const &e)    {        return result_of::child_c<Expr const &, N>::call(e);    }    /// \brief Return the value stored within the specified Proto    /// terminal expression.    ///    /// Return the value stored within the specified Proto    /// terminal expression. The value is returned by    /// reference.    ///    /// \param expr The Proto terminal expression.    /// \pre <tt>N::value == 0</tt>    /// \throw nothrow    /// \return A reference to the terminal's value    template<typename Expr>    BOOST_FORCEINLINE    typename result_of::value<Expr &>::type    value(Expr &e BOOST_PROTO_DISABLE_IF_IS_CONST(Expr))    {        return e.proto_base().child0;    }    /// \overload    ///    template<typename Expr>    BOOST_FORCEINLINE    typename result_of::value<Expr const &>::type    value(Expr const &e)    {        return e.proto_base().child0;    }    /// \brief Return the left child of the specified binary Proto    /// expression.    ///    /// Return the left child of the specified binary Proto expression. The    /// child is returned by reference.    ///    /// \param expr The Proto expression.    /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true.    /// \pre <tt>2 == Expr::proto_arity::value</tt>    /// \throw nothrow    /// \return A reference to the left child    template<typename Expr>    BOOST_FORCEINLINE    typename result_of::left<Expr &>::type    left(Expr &e BOOST_PROTO_DISABLE_IF_IS_CONST(Expr))    {        return e.proto_base().child0;    }    /// \overload    ///    template<typename Expr>    BOOST_FORCEINLINE    typename result_of::left<Expr const &>::type    left(Expr const &e)    {        return e.proto_base().child0;    }    /// \brief Return the right child of the specified binary Proto    /// expression.    ///    /// Return the right child of the specified binary Proto expression. The    /// child is returned by reference.    ///    /// \param expr The Proto expression.    /// \pre <tt>is_expr\<Expr\>::value</tt> is \c true.    /// \pre <tt>2 == Expr::proto_arity::value</tt>    /// \throw nothrow    /// \return A reference to the right child    template<typename Expr>    BOOST_FORCEINLINE    typename result_of::right<Expr &>::type    right(Expr &e BOOST_PROTO_DISABLE_IF_IS_CONST(Expr))    {        return e.proto_base().child1;    }    /// \overload    ///    template<typename Expr>    BOOST_FORCEINLINE    typename result_of::right<Expr const &>::type    right(Expr const &e)    {        return e.proto_base().child1;    }    /// INTERNAL ONLY    ///    template<typename Domain>    struct is_callable<functional::as_expr<Domain> >      : mpl::true_    {};    /// INTERNAL ONLY    ///    template<typename Domain>    struct is_callable<functional::as_child<Domain> >      : mpl::true_    {};    /// INTERNAL ONLY    ///    template<long N>    struct is_callable<functional::child_c<N> >      : mpl::true_    {};    /// INTERNAL ONLY    ///    template<typename N>    struct is_callable<functional::child<N> >      : mpl::true_    {};}}#if defined(_MSC_VER)# pragma warning(pop)#endif#endif
 |