| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276 | #ifndef BOOST_PYTHON_SLICE_JDB20040105_HPP#define BOOST_PYTHON_SLICE_JDB20040105_HPP// Copyright (c) 2004 Jonathan Brandmeyer//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#include <boost/python/detail/prefix.hpp>#include <boost/config.hpp>#include <boost/python/object.hpp>#include <boost/python/extract.hpp>#include <boost/python/converter/pytype_object_mgr_traits.hpp>#include <boost/iterator/iterator_traits.hpp>#include <iterator>#include <algorithm>namespace boost { namespace python {namespace detail{  class BOOST_PYTHON_DECL slice_base : public object  {   public:      // Get the Python objects associated with the slice.  In principle, these       // may be any arbitrary Python type, but in practice they are usually       // integers.  If one or more parameter is ommited in the Python expression       // that created this slice, than that parameter is None here, and compares       // equal to a default-constructed boost::python::object.      // If a user-defined type wishes to support slicing, then support for the       // special meaning associated with negative indices is up to the user.      object start() const;      object stop() const;      object step() const;           protected:      explicit slice_base(PyObject*, PyObject*, PyObject*);      BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice_base, object)  };}class slice : public detail::slice_base{    typedef detail::slice_base base; public:    // Equivalent to slice(::)    slice() : base(0,0,0) {}    // Each argument must be slice_nil, or implicitly convertable to object.    // They should normally be integers.    template<typename Integer1, typename Integer2>    slice( Integer1 start, Integer2 stop)        : base( object(start).ptr(), object(stop).ptr(), 0 )    {}        template<typename Integer1, typename Integer2, typename Integer3>    slice( Integer1 start, Integer2 stop, Integer3 stride)        : base( object(start).ptr(), object(stop).ptr(), object(stride).ptr() )    {}            // The following algorithm is intended to automate the process of     // determining a slice range when you want to fully support negative    // indices and non-singular step sizes.  Its functionallity is simmilar to     // PySlice_GetIndicesEx() in the Python/C API, but tailored for C++ users.    // This template returns a slice::range struct that, when used in the     // following iterative loop, will traverse a slice of the function's    // arguments.    // while (start != end) {     //     do_foo(...);     //     std::advance( start, step);     // }    // do_foo(...); // repeat exactly once more.        // Arguments: a [begin, end) pair of STL-conforming random-access iterators.            // Return: slice::range, where start and stop define a _closed_ interval    // that covers at most [begin, end-1] of the provided arguments, and a step     // that is non-zero.        // Throws: error_already_set() if any of the indices are neither None nor     //   integers, or the slice has a step value of zero.    // std::invalid_argument if the resulting range would be empty.  Normally,     //   you should catch this exception and return an empty sequence of the    //   appropriate type.        // Performance: constant time for random-access iterators.        // Rationale:     //   closed-interval: If an open interval were used, then for a non-singular    //     value for step, the required state for the end iterator could be     //     beyond the one-past-the-end postion of the specified range.  While     //     probably harmless, the behavior of STL-conforming iterators is     //     undefined in this case.    //   exceptions on zero-length range: It is impossible to define a closed     //     interval over an empty range, so some other form of error checking     //     would have to be used by the user to prevent undefined behavior.  In    //     the case where the user fails to catch the exception, it will simply    //     be translated to Python by the default exception handling mechanisms.    template<typename RandomAccessIterator>    struct range    {        RandomAccessIterator start;        RandomAccessIterator stop;        typename iterator_difference<RandomAccessIterator>::type step;    };        template<typename RandomAccessIterator>    slice::range<RandomAccessIterator>    get_indices( const RandomAccessIterator& begin,         const RandomAccessIterator& end) const    {        // This is based loosely on PySlice_GetIndicesEx(), but it has been         // carefully crafted to ensure that these iterators never fall out of        // the range of the container.        slice::range<RandomAccessIterator> ret;                typedef typename iterator_difference<RandomAccessIterator>::type difference_type;        difference_type max_dist = std::distance(begin, end);        object slice_start = this->start();        object slice_stop = this->stop();        object slice_step = this->step();                // Extract the step.        if (slice_step == object()) {            ret.step = 1;        }        else {            ret.step = extract<long>( slice_step);            if (ret.step == 0) {                PyErr_SetString( PyExc_IndexError, "step size cannot be zero.");                throw_error_already_set();            }        }                // Setup the start iterator.        if (slice_start == object()) {            if (ret.step < 0) {                ret.start = end;                --ret.start;            }            else                ret.start = begin;        }        else {            difference_type i = extract<long>( slice_start);            if (i >= max_dist && ret.step > 0)                    throw std::invalid_argument( "Zero-length slice");            if (i >= 0) {                ret.start = begin;                BOOST_USING_STD_MIN();                std::advance( ret.start, min BOOST_PREVENT_MACRO_SUBSTITUTION(i, max_dist-1));            }            else {                if (i < -max_dist && ret.step < 0)                    throw std::invalid_argument( "Zero-length slice");                ret.start = end;                // Advance start (towards begin) not farther than begin.                std::advance( ret.start, (-i < max_dist) ? i : -max_dist );            }        }                // Set up the stop iterator.  This one is a little trickier since slices        // define a [) range, and we are returning a [] range.        if (slice_stop == object()) {            if (ret.step < 0) {                ret.stop = begin;            }            else {                ret.stop = end;                std::advance( ret.stop, -1);            }        }        else {            difference_type i = extract<long>(slice_stop);            // First, branch on which direction we are going with this.            if (ret.step < 0) {                if (i+1 >= max_dist || i == -1)                    throw std::invalid_argument( "Zero-length slice");                                if (i >= 0) {                    ret.stop = begin;                    std::advance( ret.stop, i+1);                }                else { // i is negative, but more negative than -1.                    ret.stop = end;                    std::advance( ret.stop, (-i < max_dist) ? i : -max_dist);                }            }            else { // stepping forward                if (i == 0 || -i >= max_dist)                    throw std::invalid_argument( "Zero-length slice");                                if (i > 0) {                    ret.stop = begin;                    std::advance( ret.stop, (std::min)( i-1, max_dist-1));                }                else { // i is negative, but not more negative than -max_dist                    ret.stop = end;                    std::advance( ret.stop, i-1);                }            }        }                // Now the fun part, handling the possibilites surrounding step.        // At this point, step has been initialized, ret.stop, and ret.step        // represent the widest possible range that could be traveled        // (inclusive), and final_dist is the maximum distance covered by the        // slice.        typename iterator_difference<RandomAccessIterator>::type final_dist =             std::distance( ret.start, ret.stop);                // First case, if both ret.start and ret.stop are equal, then step        // is irrelevant and we can return here.        if (final_dist == 0)            return ret;                // Second, if there is a sign mismatch, than the resulting range and         // step size conflict: std::advance( ret.start, ret.step) goes away from        // ret.stop.        if ((final_dist > 0) != (ret.step > 0))            throw std::invalid_argument( "Zero-length slice.");                // Finally, if the last step puts us past the end, we move ret.stop        // towards ret.start in the amount of the remainder.        // I don't remember all of the oolies surrounding negative modulii,        // so I am handling each of these cases separately.        if (final_dist < 0) {            difference_type remainder = -final_dist % -ret.step;            std::advance( ret.stop, remainder);        }        else {            difference_type remainder = final_dist % ret.step;            std::advance( ret.stop, -remainder);        }                return ret;    }    // Incorrect spelling. DO NOT USE. Only here for backward compatibility.    // Corrected 2011-06-14.    template<typename RandomAccessIterator>    slice::range<RandomAccessIterator>    get_indicies( const RandomAccessIterator& begin,         const RandomAccessIterator& end) const    {        return get_indices(begin, end);    }         public:    // This declaration, in conjunction with the specialization of     // object_manager_traits<> below, allows C++ functions accepting slice     // arguments to be called from from Python.  These constructors should never    // be used in client code.    BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice, detail::slice_base)};namespace converter {template<>struct object_manager_traits<slice>    : pytype_object_manager_traits<&PySlice_Type, slice>{};    } // !namesapce converter} } // !namespace ::boost::python#endif // !defined BOOST_PYTHON_SLICE_JDB20040105_HPP
 |