| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580 | //  (C) Copyright Nick Thompson 2019.//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_MATH_DIFFERENTIATION_LANCZOS_SMOOTHING_HPP#define BOOST_MATH_DIFFERENTIATION_LANCZOS_SMOOTHING_HPP#include <cmath> // for std::abs#include <limits> // to nan initialize#include <vector>#include <string>#include <stdexcept>#include <boost/assert.hpp>namespace boost::math::differentiation {namespace detail {template <typename Real>class discrete_legendre {  public:    explicit discrete_legendre(std::size_t n, Real x) : m_n{n}, m_r{2}, m_x{x},                                                        m_qrm2{1}, m_qrm1{x},                                                        m_qrm2p{0}, m_qrm1p{1},                                                        m_qrm2pp{0}, m_qrm1pp{0}    {        using std::abs;        BOOST_ASSERT_MSG(abs(m_x) <= 1, "Three term recurrence is stable only for |x| <=1.");        // The integer n indexes a family of discrete Legendre polynomials indexed by k <= 2*n    }    Real norm_sq(int r) const    {        Real prod = Real(2) / Real(2 * r + 1);        for (int k = -r; k <= r; ++k) {            prod *= Real(2 * m_n + 1 + k) / Real(2 * m_n);        }        return prod;    }    Real next()    {        Real N = 2 * m_n + 1;        Real num = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) * m_qrm2;        Real tmp = (2 * m_r - 1) * m_x * m_qrm1 - num / Real(4 * m_n * m_n);        m_qrm2 = m_qrm1;        m_qrm1 = tmp / m_r;        ++m_r;        return m_qrm1;    }    Real next_prime()    {        Real N = 2 * m_n + 1;        Real s = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) / Real(4 * m_n * m_n);        Real tmp1 = ((2 * m_r - 1) * m_x * m_qrm1 - s * m_qrm2) / m_r;        Real tmp2 = ((2 * m_r - 1) * (m_qrm1 + m_x * m_qrm1p) - s * m_qrm2p) / m_r;        m_qrm2 = m_qrm1;        m_qrm1 = tmp1;        m_qrm2p = m_qrm1p;        m_qrm1p = tmp2;        ++m_r;        return m_qrm1p;    }    Real next_dbl_prime()    {        Real N = 2*m_n + 1;        Real trm1 = 2*m_r - 1;        Real s = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) / Real(4 * m_n * m_n);        Real rqrpp = 2*trm1*m_qrm1p + trm1*m_x*m_qrm1pp - s*m_qrm2pp;        Real tmp1 = ((2 * m_r - 1) * m_x * m_qrm1 - s * m_qrm2) / m_r;        Real tmp2 = ((2 * m_r - 1) * (m_qrm1 + m_x * m_qrm1p) - s * m_qrm2p) / m_r;        m_qrm2 = m_qrm1;        m_qrm1 = tmp1;        m_qrm2p = m_qrm1p;        m_qrm1p = tmp2;        m_qrm2pp = m_qrm1pp;        m_qrm1pp = rqrpp/m_r;        ++m_r;        return m_qrm1pp;    }    Real operator()(Real x, std::size_t k)    {        BOOST_ASSERT_MSG(k <= 2 * m_n, "r <= 2n is required.");        if (k == 0)        {            return 1;        }        if (k == 1)        {            return x;        }        Real qrm2 = 1;        Real qrm1 = x;        Real N = 2 * m_n + 1;        for (std::size_t r = 2; r <= k; ++r) {            Real num = (r - 1) * (N * N - (r - 1) * (r - 1)) * qrm2;            Real tmp = (2 * r - 1) * x * qrm1 - num / Real(4 * m_n * m_n);            qrm2 = qrm1;            qrm1 = tmp / r;        }        return qrm1;    }    Real prime(Real x, std::size_t k) {        BOOST_ASSERT_MSG(k <= 2 * m_n, "r <= 2n is required.");        if (k == 0) {            return 0;        }        if (k == 1) {            return 1;        }        Real qrm2 = 1;        Real qrm1 = x;        Real qrm2p = 0;        Real qrm1p = 1;        Real N = 2 * m_n + 1;        for (std::size_t r = 2; r <= k; ++r) {            Real s =                (r - 1) * (N * N - (r - 1) * (r - 1)) / Real(4 * m_n * m_n);            Real tmp1 = ((2 * r - 1) * x * qrm1 - s * qrm2) / r;            Real tmp2 = ((2 * r - 1) * (qrm1 + x * qrm1p) - s * qrm2p) / r;            qrm2 = qrm1;            qrm1 = tmp1;            qrm2p = qrm1p;            qrm1p = tmp2;        }        return qrm1p;    }  private:    std::size_t m_n;    std::size_t m_r;    Real m_x;    Real m_qrm2;    Real m_qrm1;    Real m_qrm2p;    Real m_qrm1p;    Real m_qrm2pp;    Real m_qrm1pp;};template <class Real>std::vector<Real> interior_velocity_filter(std::size_t n, std::size_t p) {    auto dlp = discrete_legendre<Real>(n, 0);    std::vector<Real> coeffs(p+1);    coeffs[1] = 1/dlp.norm_sq(1);    for (std::size_t l = 3; l < p + 1; l += 2)    {        dlp.next_prime();        coeffs[l] = dlp.next_prime()/ dlp.norm_sq(l);    }    // We could make the filter length n, as f[0] = 0,    // but that'd make the indexing awkward when applying the filter.    std::vector<Real> f(n + 1);    // This value should never be read, but this is the correct value *if it is read*.    // Hmm, should it be a nan then? I'm not gonna agonize.    f[0] = 0;    for (std::size_t j = 1; j < f.size(); ++j)    {        Real arg = Real(j) / Real(n);        dlp = discrete_legendre<Real>(n, arg);        f[j] = coeffs[1]*arg;        for (std::size_t l = 3; l <= p; l += 2)        {            dlp.next();            f[j] += coeffs[l]*dlp.next();        }        f[j] /= (n * n);    }    return f;}template <class Real>std::vector<Real> boundary_velocity_filter(std::size_t n, std::size_t p, int64_t s){    std::vector<Real> coeffs(p+1, std::numeric_limits<Real>::quiet_NaN());    Real sn = Real(s) / Real(n);    auto dlp = discrete_legendre<Real>(n, sn);    coeffs[0] = 0;    coeffs[1] = 1/dlp.norm_sq(1);    for (std::size_t l = 2; l < p + 1; ++l)    {        // Calculation of the norms is common to all filters,        // so it seems like an obvious optimization target.        // I tried this: The spent in computing the norms time is not negligible,        // but still a small fraction of the total compute time.        // Hence I'm not refactoring out these norm calculations.        coeffs[l] = dlp.next_prime()/ dlp.norm_sq(l);    }    std::vector<Real> f(2*n + 1);    for (std::size_t k = 0; k < f.size(); ++k)    {        Real j = Real(k) - Real(n);        Real arg = j/Real(n);        dlp = discrete_legendre<Real>(n, arg);        f[k] = coeffs[1]*arg;        for (std::size_t l = 2; l <= p; ++l)        {            f[k] += coeffs[l]*dlp.next();        }        f[k] /= (n * n);    }    return f;}template <class Real>std::vector<Real> acceleration_filter(std::size_t n, std::size_t p, int64_t s){    BOOST_ASSERT_MSG(p <= 2*n, "Approximation order must be <= 2*n");    BOOST_ASSERT_MSG(p > 2, "Approximation order must be > 2");    std::vector<Real> coeffs(p+1, std::numeric_limits<Real>::quiet_NaN());    Real sn = Real(s) / Real(n);    auto dlp = discrete_legendre<Real>(n, sn);    coeffs[0] = 0;    coeffs[1] = 0;    for (std::size_t l = 2; l < p + 1; ++l)    {        coeffs[l] = dlp.next_dbl_prime()/ dlp.norm_sq(l);    }    std::vector<Real> f(2*n + 1, 0);    for (std::size_t k = 0; k < f.size(); ++k)    {        Real j = Real(k) - Real(n);        Real arg = j/Real(n);        dlp = discrete_legendre<Real>(n, arg);        for (std::size_t l = 2; l <= p; ++l)        {            f[k] += coeffs[l]*dlp.next();        }        f[k] /= (n * n * n);    }    return f;}} // namespace detailtemplate <typename Real, std::size_t order = 1>class discrete_lanczos_derivative {public:    discrete_lanczos_derivative(Real const & spacing,                                std::size_t n = 18,                                std::size_t approximation_order = 3)        : m_dt{spacing}    {        static_assert(!std::is_integral_v<Real>,                      "Spacing must be a floating point type.");        BOOST_ASSERT_MSG(spacing > 0,                         "Spacing between samples must be > 0.");        if constexpr (order == 1)        {            BOOST_ASSERT_MSG(approximation_order <= 2 * n,                             "The approximation order must be <= 2n");            BOOST_ASSERT_MSG(approximation_order >= 2,                             "The approximation order must be >= 2");            if constexpr (std::is_same_v<Real, float> || std::is_same_v<Real, double>)            {                auto interior = detail::interior_velocity_filter<long double>(n, approximation_order);                m_f.resize(interior.size());                for (std::size_t j = 0; j < interior.size(); ++j)                {                    m_f[j] = static_cast<Real>(interior[j])/m_dt;                }            }            else            {                m_f = detail::interior_velocity_filter<Real>(n, approximation_order);                for (auto & x : m_f)                {                    x /= m_dt;                }            }            m_boundary_filters.resize(n);            // This for loop is a natural candidate for parallelization.            // But does it matter? Probably not.            for (std::size_t i = 0; i < n; ++i)            {                if constexpr (std::is_same_v<Real, float> || std::is_same_v<Real, double>)                {                    int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);                    auto bf = detail::boundary_velocity_filter<long double>(n, approximation_order, s);                    m_boundary_filters[i].resize(bf.size());                    for (std::size_t j = 0; j < bf.size(); ++j)                    {                        m_boundary_filters[i][j] = static_cast<Real>(bf[j])/m_dt;                    }                }                else                {                    int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);                    m_boundary_filters[i] = detail::boundary_velocity_filter<Real>(n, approximation_order, s);                    for (auto & bf : m_boundary_filters[i])                    {                        bf /= m_dt;                    }                }            }        }        else if constexpr (order == 2)        {            // High precision isn't warranted for small p; only for large p.            // (The computation appears stable for large n.)            // But given that the filters are reusable for many vectors,            // it's better to do a high precision computation and then cast back,            // since the resulting cost is a factor of 2, and the cost of the filters not working is hours of debugging.            if constexpr (std::is_same_v<Real, double> || std::is_same_v<Real, float>)            {                auto f = detail::acceleration_filter<long double>(n, approximation_order, 0);                m_f.resize(n+1);                for (std::size_t i = 0; i < m_f.size(); ++i)                {                    m_f[i] = static_cast<Real>(f[i+n])/(m_dt*m_dt);                }                m_boundary_filters.resize(n);                for (std::size_t i = 0; i < n; ++i)                {                    int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);                    auto bf = detail::acceleration_filter<long double>(n, approximation_order, s);                    m_boundary_filters[i].resize(bf.size());                    for (std::size_t j = 0; j < bf.size(); ++j)                    {                        m_boundary_filters[i][j] = static_cast<Real>(bf[j])/(m_dt*m_dt);                    }                }            }            else            {                // Given that the purpose is denoising, for higher precision calculations,                // the default precision should be fine.                auto f = detail::acceleration_filter<Real>(n, approximation_order, 0);                m_f.resize(n+1);                for (std::size_t i = 0; i < m_f.size(); ++i)                {                    m_f[i] = f[i+n]/(m_dt*m_dt);                }                m_boundary_filters.resize(n);                for (std::size_t i = 0; i < n; ++i)                {                    int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);                    m_boundary_filters[i] = detail::acceleration_filter<Real>(n, approximation_order, s);                    for (auto & bf : m_boundary_filters[i])                    {                        bf /= (m_dt*m_dt);                    }                }            }        }        else        {            BOOST_ASSERT_MSG(false, "Derivatives of order 3 and higher are not implemented.");        }    }    Real get_spacing() const    {        return m_dt;    }    template<class RandomAccessContainer>    Real operator()(RandomAccessContainer const & v, std::size_t i) const    {        static_assert(std::is_same_v<typename RandomAccessContainer::value_type, Real>,                      "The type of the values in the vector provided does not match the type in the filters.");        BOOST_ASSERT_MSG(std::size(v) >= m_boundary_filters[0].size(),            "Vector must be at least as long as the filter length");        if constexpr (order==1)        {            if (i >= m_f.size() - 1 && i <= std::size(v) - m_f.size())            {                // The filter has length >= 1:                Real dvdt = m_f[1] * (v[i + 1] - v[i - 1]);                for (std::size_t j = 2; j < m_f.size(); ++j)                {                    dvdt += m_f[j] * (v[i + j] - v[i - j]);                }                return dvdt;            }            // m_f.size() = N+1            if (i < m_f.size() - 1)            {                auto &bf = m_boundary_filters[i];                Real dvdt = bf[0]*v[0];                for (std::size_t j = 1; j < bf.size(); ++j)                {                    dvdt += bf[j] * v[j];                }                return dvdt;            }            if (i > std::size(v) - m_f.size() && i < std::size(v))            {                int k = std::size(v) - 1 - i;                auto &bf = m_boundary_filters[k];                Real dvdt = bf[0]*v[std::size(v)-1];                for (std::size_t j = 1; j < bf.size(); ++j)                {                    dvdt += bf[j] * v[std::size(v) - 1 - j];                }                return -dvdt;            }        }        else if constexpr (order==2)        {            if (i >= m_f.size() - 1 && i <= std::size(v) - m_f.size())            {                Real d2vdt2 = m_f[0]*v[i];                for (std::size_t j = 1; j < m_f.size(); ++j)                {                    d2vdt2 += m_f[j] * (v[i + j] + v[i - j]);                }                return d2vdt2;            }            // m_f.size() = N+1            if (i < m_f.size() - 1)            {                auto &bf = m_boundary_filters[i];                Real d2vdt2 = bf[0]*v[0];                for (std::size_t j = 1; j < bf.size(); ++j)                {                    d2vdt2 += bf[j] * v[j];                }                return d2vdt2;            }            if (i > std::size(v) - m_f.size() && i < std::size(v))            {                int k = std::size(v) - 1 - i;                auto &bf = m_boundary_filters[k];                Real d2vdt2 = bf[0] * v[std::size(v) - 1];                for (std::size_t j = 1; j < bf.size(); ++j)                {                    d2vdt2 += bf[j] * v[std::size(v) - 1 - j];                }                return d2vdt2;            }        }        // OOB access:        std::string msg = "Out of bounds access in Lanczos derivative.";        msg += "Input vector has length " + std::to_string(std::size(v)) + ", but user requested access at index " + std::to_string(i) + ".";        throw std::out_of_range(msg);        return std::numeric_limits<Real>::quiet_NaN();    }    template<class RandomAccessContainer>    void operator()(RandomAccessContainer const & v, RandomAccessContainer & w) const    {        static_assert(std::is_same_v<typename RandomAccessContainer::value_type, Real>,                      "The type of the values in the vector provided does not match the type in the filters.");        if (&w[0] == &v[0])        {            throw std::logic_error("This transform cannot be performed in-place.");        }        if (std::size(v) < m_boundary_filters[0].size())        {            std::string msg = "The input vector must be at least as long as the filter length. ";            msg += "The input vector has length = " + std::to_string(std::size(v)) + ", the filter has length " + std::to_string(m_boundary_filters[0].size());            throw std::length_error(msg);        }        if (std::size(w) < std::size(v))        {            std::string msg = "The output vector (containing the derivative) must be at least as long as the input vector.";            msg += "The output vector has length = " + std::to_string(std::size(w)) + ", the input vector has length " + std::to_string(std::size(v));            throw std::length_error(msg);        }        if constexpr (order==1)        {            for (std::size_t i = 0; i < m_f.size() - 1; ++i)            {                auto &bf = m_boundary_filters[i];                Real dvdt = bf[0] * v[0];                for (std::size_t j = 1; j < bf.size(); ++j)                {                    dvdt += bf[j] * v[j];                }                w[i] = dvdt;            }            for(std::size_t i = m_f.size() - 1; i <= std::size(v) - m_f.size(); ++i)            {                Real dvdt = m_f[1] * (v[i + 1] - v[i - 1]);                for (std::size_t j = 2; j < m_f.size(); ++j)                {                    dvdt += m_f[j] *(v[i + j] - v[i - j]);                }                w[i] = dvdt;            }            for(std::size_t i = std::size(v) - m_f.size() + 1; i < std::size(v); ++i)            {                int k = std::size(v) - 1 - i;                auto &f = m_boundary_filters[k];                Real dvdt = f[0] * v[std::size(v) - 1];;                for (std::size_t j = 1; j < f.size(); ++j)                {                    dvdt += f[j] * v[std::size(v) - 1 - j];                }                w[i] = -dvdt;            }        }        else if constexpr (order==2)        {            // m_f.size() = N+1            for (std::size_t i = 0; i < m_f.size() - 1; ++i)            {                auto &bf = m_boundary_filters[i];                Real d2vdt2 = 0;                for (std::size_t j = 0; j < bf.size(); ++j)                {                    d2vdt2 += bf[j] * v[j];                }                w[i] = d2vdt2;            }            for (std::size_t i = m_f.size() - 1; i <= std::size(v) - m_f.size(); ++i)            {                Real d2vdt2 = m_f[0]*v[i];                for (std::size_t j = 1; j < m_f.size(); ++j)                {                    d2vdt2 += m_f[j] * (v[i + j] + v[i - j]);                }                w[i] = d2vdt2;            }            for (std::size_t i = std::size(v) - m_f.size() + 1; i < std::size(v); ++i)            {                int k = std::size(v) - 1 - i;                auto &bf = m_boundary_filters[k];                Real d2vdt2 = bf[0] * v[std::size(v) - 1];                for (std::size_t j = 1; j < bf.size(); ++j)                {                    d2vdt2 += bf[j] * v[std::size(v) - 1 - j];                }                w[i] = d2vdt2;            }        }    }    template<class RandomAccessContainer>    RandomAccessContainer operator()(RandomAccessContainer const & v) const    {        RandomAccessContainer w(std::size(v));        this->operator()(v, w);        return w;    }    // Don't copy; too big.    discrete_lanczos_derivative( const discrete_lanczos_derivative & ) = delete;    discrete_lanczos_derivative& operator=(const discrete_lanczos_derivative&) = delete;    // Allow moves:    discrete_lanczos_derivative(discrete_lanczos_derivative&&) = default;    discrete_lanczos_derivative& operator=(discrete_lanczos_derivative&&) = default;private:    std::vector<Real> m_f;    std::vector<std::vector<Real>> m_boundary_filters;    Real m_dt;};} // namespaces#endif
 |