| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252 | //  (C) Copyright John Maddock 2005.//  Distributed under the Boost Software License, Version 1.0. (See accompanying//  file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_MATH_COMPLEX_ASIN_INCLUDED#define BOOST_MATH_COMPLEX_ASIN_INCLUDED#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED#  include <boost/math/complex/details.hpp>#endif#ifndef BOOST_MATH_LOG1P_INCLUDED#  include <boost/math/special_functions/log1p.hpp>#endif#include <boost/assert.hpp>#ifdef BOOST_NO_STDC_NAMESPACEnamespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }#endifnamespace boost{ namespace math{template<class T> inline std::complex<T> asin(const std::complex<T>& z){   //   // This implementation is a transcription of the pseudo-code in:   //   // "Implementing the complex Arcsine and Arccosine Functions using Exception Handling."   // T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang.   // ACM Transactions on Mathematical Software, Vol 23, No 3, Sept 1997.   //   //   // These static constants should really be in a maths constants library,   // note that we have tweaked the value of a_crossover as per https://svn.boost.org/trac/boost/ticket/7290:   //   static const T one = static_cast<T>(1);   //static const T two = static_cast<T>(2);   static const T half = static_cast<T>(0.5L);   static const T a_crossover = static_cast<T>(10);   static const T b_crossover = static_cast<T>(0.6417L);   static const T s_pi = boost::math::constants::pi<T>();   static const T half_pi = s_pi / 2;   static const T log_two = boost::math::constants::ln_two<T>();   static const T quarter_pi = s_pi / 4;#ifdef BOOST_MSVC#pragma warning(push)#pragma warning(disable:4127)#endif   //   // Get real and imaginary parts, discard the signs as we can    // figure out the sign of the result later:   //   T x = std::fabs(z.real());   T y = std::fabs(z.imag());   T real, imag;  // our results   //   // Begin by handling the special cases for infinities and nan's   // specified in C99, most of this is handled by the regular logic   // below, but handling it as a special case prevents overflow/underflow   // arithmetic which may trip up some machines:   //   if((boost::math::isnan)(x))   {      if((boost::math::isnan)(y))         return std::complex<T>(x, x);      if((boost::math::isinf)(y))      {         real = x;         imag = std::numeric_limits<T>::infinity();      }      else         return std::complex<T>(x, x);   }   else if((boost::math::isnan)(y))   {      if(x == 0)      {         real = 0;         imag = y;      }      else if((boost::math::isinf)(x))      {         real = y;         imag = std::numeric_limits<T>::infinity();      }      else         return std::complex<T>(y, y);   }   else if((boost::math::isinf)(x))   {      if((boost::math::isinf)(y))      {         real = quarter_pi;         imag = std::numeric_limits<T>::infinity();      }      else      {         real = half_pi;         imag = std::numeric_limits<T>::infinity();      }   }   else if((boost::math::isinf)(y))   {      real = 0;      imag = std::numeric_limits<T>::infinity();   }   else   {      //      // special case for real numbers:      //      if((y == 0) && (x <= one))         return std::complex<T>(std::asin(z.real()), z.imag());      //      // Figure out if our input is within the "safe area" identified by Hull et al.      // This would be more efficient with portable floating point exception handling;      // fortunately the quantities M and u identified by Hull et al (figure 3),       // match with the max and min methods of numeric_limits<T>.      //      T safe_max = detail::safe_max(static_cast<T>(8));      T safe_min = detail::safe_min(static_cast<T>(4));      T xp1 = one + x;      T xm1 = x - one;      if((x < safe_max) && (x > safe_min) && (y < safe_max) && (y > safe_min))      {         T yy = y * y;         T r = std::sqrt(xp1*xp1 + yy);         T s = std::sqrt(xm1*xm1 + yy);         T a = half * (r + s);         T b = x / a;         if(b <= b_crossover)         {            real = std::asin(b);         }         else         {            T apx = a + x;            if(x <= one)            {               real = std::atan(x/std::sqrt(half * apx * (yy /(r + xp1) + (s-xm1))));            }            else            {               real = std::atan(x/(y * std::sqrt(half * (apx/(r + xp1) + apx/(s+xm1)))));            }         }         if(a <= a_crossover)         {            T am1;            if(x < one)            {               am1 = half * (yy/(r + xp1) + yy/(s - xm1));            }            else            {               am1 = half * (yy/(r + xp1) + (s + xm1));            }            imag = boost::math::log1p(am1 + std::sqrt(am1 * (a + one)));         }         else         {            imag = std::log(a + std::sqrt(a*a - one));         }      }      else      {         //         // This is the Hull et al exception handling code from Fig 3 of their paper:         //         if(y <= (std::numeric_limits<T>::epsilon() * std::fabs(xm1)))         {            if(x < one)            {               real = std::asin(x);               imag = y / std::sqrt(-xp1*xm1);            }            else            {               real = half_pi;               if(((std::numeric_limits<T>::max)() / xp1) > xm1)               {                  // xp1 * xm1 won't overflow:                  imag = boost::math::log1p(xm1 + std::sqrt(xp1*xm1));               }               else               {                  imag = log_two + std::log(x);               }            }         }         else if(y <= safe_min)         {            // There is an assumption in Hull et al's analysis that            // if we get here then x == 1.  This is true for all "good"            // machines where :            //             // E^2 > 8*sqrt(u); with:            //            // E =  std::numeric_limits<T>::epsilon()            // u = (std::numeric_limits<T>::min)()            //            // Hull et al provide alternative code for "bad" machines            // but we have no way to test that here, so for now just assert            // on the assumption:            //            BOOST_ASSERT(x == 1);            real = half_pi - std::sqrt(y);            imag = std::sqrt(y);         }         else if(std::numeric_limits<T>::epsilon() * y - one >= x)         {            real = x/y; // This can underflow!            imag = log_two + std::log(y);         }         else if(x > one)         {            real = std::atan(x/y);            T xoy = x/y;            imag = log_two + std::log(y) + half * boost::math::log1p(xoy*xoy);         }         else         {            T a = std::sqrt(one + y*y);            real = x/a; // This can underflow!            imag = half * boost::math::log1p(static_cast<T>(2)*y*(y+a));         }      }   }   //   // Finish off by working out the sign of the result:   //   if((boost::math::signbit)(z.real()))      real = (boost::math::changesign)(real);   if((boost::math::signbit)(z.imag()))      imag = (boost::math::changesign)(imag);   return std::complex<T>(real, imag);#ifdef BOOST_MSVC#pragma warning(pop)#endif}} } // namespaces#endif // BOOST_MATH_COMPLEX_ASIN_INCLUDED
 |