| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 | //  (C) Copyright Nick Thompson 2019.//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_MATH_TOOLS_CONDITION_NUMBERS_HPP#define BOOST_MATH_TOOLS_CONDITION_NUMBERS_HPP#include <cmath>#include <boost/math/differentiation/finite_difference.hpp>namespace boost::math::tools {template<class Real, bool kahan=true>class summation_condition_number {public:    summation_condition_number(Real const x = 0)    {        using std::abs;        m_l1 = abs(x);        m_sum = x;        m_c = 0;    }    void operator+=(Real const & x)    {        using std::abs;        // No need to Kahan the l1 calc; it's well conditioned:        m_l1 += abs(x);        if constexpr(kahan)        {            Real y = x - m_c;            Real t = m_sum + y;            m_c = (t-m_sum) -y;            m_sum = t;        }        else        {            m_sum += x;        }    }    inline void operator-=(Real const & x)    {        this->operator+=(-x);    }    // Is operator*= relevant? Presumably everything gets rescaled,    // (m_sum -> k*m_sum, m_l1->k*m_l1, m_c->k*m_c),    // but is this sensible? More important is it useful?    // In addition, it might change the condition number.    [[nodiscard]] Real operator()() const    {        using std::abs;        if (m_sum == Real(0) && m_l1 != Real(0))        {            return std::numeric_limits<Real>::infinity();        }        return m_l1/abs(m_sum);    }    [[nodiscard]] Real sum() const    {        // Higham, 1993, "The Accuracy of Floating Point Summation":        // "In [17] and [18], Kahan describes a variation of compensated summation in which the final sum is also corrected        // thus s=s+e is appended to the algorithm above)."        return m_sum + m_c;    }    [[nodiscard]] Real l1_norm() const    {        return m_l1;    }private:    Real m_l1;    Real m_sum;    Real m_c;};template<class F, class Real>auto evaluation_condition_number(F const & f, Real const & x){    using std::abs;    using std::isnan;    using std::sqrt;    using boost::math::differentiation::finite_difference_derivative;    Real fx = f(x);    if (isnan(fx))    {        return std::numeric_limits<Real>::quiet_NaN();    }    bool caught_exception = false;    Real fp;    try    {        fp = finite_difference_derivative(f, x);    }    catch(...)    {        caught_exception = true;    }    if (isnan(fp) || caught_exception)    {        // Check if the right derivative exists:        fp = finite_difference_derivative<decltype(f), Real, 1>(f, x);        if (isnan(fp))        {            // Check if a left derivative exists:            const Real eps = (std::numeric_limits<Real>::epsilon)();            Real h = - 2 * sqrt(eps);            h = boost::math::differentiation::detail::make_xph_representable(x, h);            Real yh = f(x + h);            Real y0 = f(x);            Real diff = yh - y0;            fp = diff / h;            if (isnan(fp))            {                return std::numeric_limits<Real>::quiet_NaN();            }        }    }    if (fx == 0)    {        if (x==0 || fp==0)        {            return std::numeric_limits<Real>::quiet_NaN();        }        return std::numeric_limits<Real>::infinity();    }    return abs(x*fp/fx);}}#endif
 |