| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 | /*!@fileForward declares `boost::hana::mod`.@copyright Louis Dionne 2013-2017Distributed under the Boost Software License, Version 1.0.(See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt) */#ifndef BOOST_HANA_FWD_MOD_HPP#define BOOST_HANA_FWD_MOD_HPP#include <boost/hana/config.hpp>#include <boost/hana/core/when.hpp>BOOST_HANA_NAMESPACE_BEGIN    //! Generalized integer modulus.    //! @ingroup group-EuclideanRing    //!    //! Given two elements of an EuclideanRing `x` and `y`, with `y`    //! nonzero, `mod` returns the modulus of the division of `x` by `y`.    //! In other words, `mod` can be seen as an equivalent to `%`.    //!    //! Cross-type version of the method    //! --------------------------------    //! The `mod` method is "overloaded" to handle distinct data types    //! with certain properties. Specifically, `mod` is defined for    //! _distinct_ data types `A` and `B` such that    //! 1. `A` and `B` share a common data type `C`, as determined by the    //!    `common` metafunction    //! 2. `A`, `B` and `C` are all `EuclideanRing`s when taken individually    //! 3. `to<C> : A -> B` and `to<C> : B -> C` are `Ring`-embeddings, as    //!    determined by the `is_embedding` metafunction.    //!    //! In that case, `mod` is defined as    //! @code    //!     mod(x, y) = mod(to<C>(x), to<C>(y))    //! @endcode    //!    //!    //! Example    //! -------    //! @include example/mod.cpp#ifdef BOOST_HANA_DOXYGEN_INVOKED    constexpr auto mod = [](auto&& x, auto&& y) -> decltype(auto) {        return tag-dispatched;    };#else    template <typename T, typename U, typename = void>    struct mod_impl : mod_impl<T, U, when<true>> { };    struct mod_t {        template <typename X, typename Y>        constexpr decltype(auto) operator()(X&& x, Y&& y) const;    };    constexpr mod_t mod{};#endifBOOST_HANA_NAMESPACE_END#endif // !BOOST_HANA_FWD_MOD_HPP
 |