| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 | /* boost random/detail/const_mod.hpp header file * * Copyright Jens Maurer 2000-2001 * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * See http://www.boost.org for most recent version including documentation. * * $Id$ * * Revision history *  2001-02-18  moved to individual header files */#ifndef BOOST_RANDOM_CONST_MOD_HPP#define BOOST_RANDOM_CONST_MOD_HPP#include <boost/assert.hpp>#include <boost/static_assert.hpp>#include <boost/integer_traits.hpp>#include <boost/type_traits/make_unsigned.hpp>#include <boost/random/detail/large_arithmetic.hpp>#include <boost/random/detail/disable_warnings.hpp>namespace boost {namespace random {template<class IntType, IntType m>class const_mod{public:  static IntType apply(IntType x)  {    if(((unsigned_m() - 1) & unsigned_m()) == 0)      return (unsigned_type(x)) & (unsigned_m() - 1);    else {      IntType suppress_warnings = (m == 0);      BOOST_ASSERT(suppress_warnings == 0);      return x % (m + suppress_warnings);    }  }  static IntType add(IntType x, IntType c)  {    if(((unsigned_m() - 1) & unsigned_m()) == 0)      return (unsigned_type(x) + unsigned_type(c)) & (unsigned_m() - 1);    else if(c == 0)      return x;    else if(x < m - c)      return x + c;    else      return x - (m - c);  }  static IntType mult(IntType a, IntType x)  {    if(((unsigned_m() - 1) & unsigned_m()) == 0)      return unsigned_type(a) * unsigned_type(x) & (unsigned_m() - 1);    else if(a == 0)      return 0;    else if(a == 1)      return x;    else if(m <= traits::const_max/a)      // i.e. a*m <= max      return mult_small(a, x);    else if(traits::is_signed && (m%a < m/a))      return mult_schrage(a, x);    else      return mult_general(a, x);  }  static IntType mult_add(IntType a, IntType x, IntType c)  {    if(((unsigned_m() - 1) & unsigned_m()) == 0)      return (unsigned_type(a) * unsigned_type(x) + unsigned_type(c)) & (unsigned_m() - 1);    else if(a == 0)      return c;    else if(m <= (traits::const_max-c)/a) {  // i.e. a*m+c <= max      IntType suppress_warnings = (m == 0);      BOOST_ASSERT(suppress_warnings == 0);      return (a*x+c) % (m + suppress_warnings);    } else      return add(mult(a, x), c);  }  static IntType pow(IntType a, boost::uintmax_t exponent)  {      IntType result = 1;      while(exponent != 0) {          if(exponent % 2 == 1) {              result = mult(result, a);          }          a = mult(a, a);          exponent /= 2;      }      return result;  }  static IntType invert(IntType x)  { return x == 0 ? 0 : (m == 0? invert_euclidian0(x) : invert_euclidian(x)); }private:  typedef integer_traits<IntType> traits;  typedef typename make_unsigned<IntType>::type unsigned_type;  const_mod();      // don't instantiate  static IntType mult_small(IntType a, IntType x)  {    IntType suppress_warnings = (m == 0);    BOOST_ASSERT(suppress_warnings == 0);    return a*x % (m + suppress_warnings);  }  static IntType mult_schrage(IntType a, IntType value)  {    const IntType q = m / a;    const IntType r = m % a;    BOOST_ASSERT(r < q);        // check that overflow cannot happen    return sub(a*(value%q), r*(value/q));  }  static IntType mult_general(IntType a, IntType b)  {    IntType suppress_warnings = (m == 0);    BOOST_ASSERT(suppress_warnings == 0);    IntType modulus = m + suppress_warnings;    BOOST_ASSERT(modulus == m);    if(::boost::uintmax_t(modulus) <=        (::std::numeric_limits< ::boost::uintmax_t>::max)() / modulus)    {      return static_cast<IntType>(boost::uintmax_t(a) * b % modulus);    } else {      return static_cast<IntType>(detail::mulmod(a, b, modulus));    }  }  static IntType sub(IntType a, IntType b)  {    if(a < b)      return m - (b - a);    else      return a - b;  }  static unsigned_type unsigned_m()  {      if(m == 0) {          return unsigned_type((std::numeric_limits<IntType>::max)()) + 1;      } else {          return unsigned_type(m);      }  }  // invert c in the finite field (mod m) (m must be prime)  static IntType invert_euclidian(IntType c)  {    // we are interested in the gcd factor for c, because this is our inverse    BOOST_ASSERT(c > 0);    IntType l1 = 0;    IntType l2 = 1;    IntType n = c;    IntType p = m;    for(;;) {      IntType q = p / n;      l1 += q * l2;      p -= q * n;      if(p == 0)        return l2;      IntType q2 = n / p;      l2 += q2 * l1;      n -= q2 * p;      if(n == 0)        return m - l1;    }  }  // invert c in the finite field (mod m) (c must be relatively prime to m)  static IntType invert_euclidian0(IntType c)  {    // we are interested in the gcd factor for c, because this is our inverse    BOOST_ASSERT(c > 0);    if(c == 1) return 1;    IntType l1 = 0;    IntType l2 = 1;    IntType n = c;    IntType p = m;    IntType max = (std::numeric_limits<IntType>::max)();    IntType q = max / n;    BOOST_ASSERT(max % n != n - 1 && "c must be relatively prime to m.");    l1 += q * l2;    p = max - q * n + 1;    for(;;) {      if(p == 0)        return l2;      IntType q2 = n / p;      l2 += q2 * l1;      n -= q2 * p;      if(n == 0)        return m - l1;      q = p / n;      l1 += q * l2;      p -= q * n;    }  }};} // namespace random} // namespace boost#include <boost/random/detail/enable_warnings.hpp>#endif // BOOST_RANDOM_CONST_MOD_HPP
 |