| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291 | /* boost random/detail/qrng_base.hpp header file * * Copyright Justinas Vygintas Daugmaudis 2010-2018 * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) */#ifndef BOOST_RANDOM_DETAIL_QRNG_BASE_HPP#define BOOST_RANDOM_DETAIL_QRNG_BASE_HPP#include <stdexcept>#include <vector>#include <limits>#include <istream>#include <ostream>#include <sstream>#include <boost/cstdint.hpp>#include <boost/random/detail/operators.hpp>#include <boost/throw_exception.hpp>#include <boost/mpl/bool.hpp>#include <boost/random/detail/disable_warnings.hpp>//!\file//!Describes the quasi-random number generator base class template.namespace boost {namespace random {namespace qrng_detail {// If the seed is a signed integer type, then we need to// check that the value is positive:template <typename Integer>inline void check_seed_sign(const Integer& v, const mpl::true_){  if (v < 0)  {    boost::throw_exception( std::range_error("seed must be a positive integer") );  }}template <typename Integer>inline void check_seed_sign(const Integer&, const mpl::false_) {}template <typename Integer>inline void check_seed_sign(const Integer& v){  check_seed_sign(v, mpl::bool_<std::numeric_limits<Integer>::is_signed>());}template<typename DerivedT, typename LatticeT, typename SizeT>class qrng_base{public:  typedef SizeT size_type;  typedef typename LatticeT::value_type result_type;  explicit qrng_base(std::size_t dimension)    // Guard against invalid dimensions before creating the lattice    : lattice(prevent_zero_dimension(dimension))    , quasi_state(dimension)  {    derived().seed();  }  // default copy c-tor is fine  // default assignment operator is fine  //!Returns: The dimension of of the quasi-random domain.  //!  //!Throws: nothing.  std::size_t dimension() const { return quasi_state.size(); }  //!Returns: Returns a successive element of an s-dimensional  //!(s = X::dimension()) vector at each invocation. When all elements are  //!exhausted, X::operator() begins anew with the starting element of a  //!subsequent s-dimensional vector.  //!  //!Throws: range_error.  result_type operator()()  {    return curr_elem != dimension() ? load_cached(): next_state();  }  //!Fills a range with quasi-random values.  template<typename Iter> void generate(Iter first, Iter last)  {    for (; first != last; ++first)      *first = this->operator()();  }  //!Effects: Advances *this state as if z consecutive  //!X::operator() invocations were executed.  //!  //!Throws: range_error.  void discard(boost::uintmax_t z)  {    const std::size_t dimension_value = dimension();    // Compiler knows how to optimize subsequent x / y and x % y    // statements. In fact, gcc does this even at -O1, so don't    // be tempted to "optimize" % via subtraction and multiplication.    boost::uintmax_t vec_n = z / dimension_value;    std::size_t carry = curr_elem + (z % dimension_value);    vec_n += carry / dimension_value;    carry  = carry % dimension_value;    // Avoid overdiscarding by branchlessly correcting the triple    // (D, S + 1, 0) to (D, S, D) (see equality operator)    const bool corr = (!carry) & static_cast<bool>(vec_n);    // Discards vec_n (with correction) consecutive s-dimensional vectors    discard_vector(vec_n - static_cast<boost::uintmax_t>(corr));#ifdef BOOST_MSVC#pragma warning(push)// disable unary minus operator applied to an unsigned type,// result still unsigned.#pragma warning(disable:4146)#endif    // Sets up the proper position of the element-to-read    // curr_elem = carry + corr*dimension_value    curr_elem = carry ^ (-static_cast<std::size_t>(corr) & dimension_value);#ifdef BOOST_MSVC#pragma warning(pop)#endif  }  //!Writes the textual representation of the generator to a @c std::ostream.  BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, qrng_base, s)  {    os << s.dimension() << " " << s.seq_count << " " << s.curr_elem;    return os;  }  //!Reads the textual representation of the generator from a @c std::istream.  BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, qrng_base, s)  {    std::size_t dim;    size_type seed;    boost::uintmax_t z;    if (is >> dim >> std::ws >> seed >> std::ws >> z) // initialize iff success!    {      // Check seed sign before resizing the lattice and/or recomputing state      check_seed_sign(seed);      if (s.dimension() != prevent_zero_dimension(dim))      {        s.lattice.resize(dim);        s.quasi_state.resize(dim);      }      // Fast-forward to the correct state      s.derived().seed(seed);      if (z != 0) s.discard(z);    }    return is;  }  //!Returns true if the two generators will produce identical sequences of outputs.  BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(qrng_base, x, y)  {    const std::size_t dimension_value = x.dimension();    // Note that two generators with different seq_counts and curr_elems can    // produce the same sequence because the generator triple    // (D, S, D) is equivalent to (D, S + 1, 0), where D is dimension, S -- seq_count,    // and the last one is curr_elem.    return (dimension_value == y.dimension()) &&      // |x.seq_count - y.seq_count| <= 1      !((x.seq_count < y.seq_count ? y.seq_count - x.seq_count : x.seq_count - y.seq_count)          > static_cast<size_type>(1)) &&      // Potential overflows don't matter here, since we've already ascertained      // that sequence counts differ by no more than 1, so if they overflow, they      // can overflow together.      (x.seq_count + (x.curr_elem / dimension_value) == y.seq_count + (y.curr_elem / dimension_value)) &&      (x.curr_elem % dimension_value == y.curr_elem % dimension_value);  }  //!Returns true if the two generators will produce different sequences of outputs.  BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(qrng_base)protected:  typedef std::vector<result_type> state_type;  typedef typename state_type::iterator state_iterator;  // Getters  size_type curr_seq() const { return seq_count; }  state_iterator state_begin() { return quasi_state.begin(); }  state_iterator state_end() { return quasi_state.end(); }  // Setters  void reset_seq(size_type seq)  {    seq_count = seq;    curr_elem = 0u;  }private:  DerivedT& derived() throw()  {    return *static_cast<DerivedT * const>(this);  }  // Load the result from the saved state.  result_type load_cached()  {    return quasi_state[curr_elem++];  }  result_type next_state()  {    size_type new_seq = seq_count;    if (BOOST_LIKELY(++new_seq > seq_count))    {      derived().compute_seq(new_seq);      reset_seq(new_seq);      return load_cached();    }    boost::throw_exception( std::range_error("qrng_base: next_state") );  }  // Discards z consecutive s-dimensional vectors,  // and preserves the position of the element-to-read  void discard_vector(boost::uintmax_t z)  {    const boost::uintmax_t max_z = std::numeric_limits<size_type>::max() - seq_count;    // Don't allow seq_count + z overflows here    if (max_z < z)      boost::throw_exception( std::range_error("qrng_base: discard_vector") );    std::size_t tmp = curr_elem;    derived().seed(static_cast<size_type>(seq_count + z));    curr_elem = tmp;  }  static std::size_t prevent_zero_dimension(std::size_t dimension)  {    if (dimension == 0)      boost::throw_exception( std::invalid_argument("qrng_base: zero dimension") );    return dimension;  }  // Member variables are so ordered with the intention  // that the typical memory access pattern would be  // incremental. Moreover, lattice is put before quasi_state  // because we want to construct lattice first. Lattices  // can do some kind of dimension sanity check (as in  // dimension_assert below), and if that fails then we don't  // need to do any more work.private:  std::size_t curr_elem;  size_type seq_count;protected:  LatticeT lattice;private:  state_type quasi_state;};inline void dimension_assert(const char* generator, std::size_t dim, std::size_t maxdim){  if (!dim || dim > maxdim)  {    std::ostringstream os;    os << "The " << generator << " quasi-random number generator only supports dimensions in range [1; "      << maxdim << "], but dimension " << dim << " was supplied.";    boost::throw_exception( std::invalid_argument(os.str()) );  }}} // namespace qrng_detail} // namespace random} // namespace boost#include <boost/random/detail/enable_warnings.hpp>#endif // BOOST_RANDOM_DETAIL_QRNG_BASE_HPP
 |