| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 | /* boost random/inversive_congruential.hpp header file * * Copyright Jens Maurer 2000-2001 * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * See http://www.boost.org for most recent version including documentation. * * $Id$ * * Revision history *  2001-02-18  moved to individual header files */#ifndef BOOST_RANDOM_INVERSIVE_CONGRUENTIAL_HPP#define BOOST_RANDOM_INVERSIVE_CONGRUENTIAL_HPP#include <iosfwd>#include <stdexcept>#include <boost/assert.hpp>#include <boost/config.hpp>#include <boost/cstdint.hpp>#include <boost/integer/static_log2.hpp>#include <boost/random/detail/config.hpp>#include <boost/random/detail/const_mod.hpp>#include <boost/random/detail/seed.hpp>#include <boost/random/detail/operators.hpp>#include <boost/random/detail/seed_impl.hpp>#include <boost/random/detail/disable_warnings.hpp>namespace boost {namespace random {// Eichenauer and Lehn 1986/** * Instantiations of class template @c inversive_congruential_engine model a * \pseudo_random_number_generator. It uses the inversive congruential * algorithm (ICG) described in * *  @blockquote *  "Inversive pseudorandom number generators: concepts, results and links", *  Peter Hellekalek, In: "Proceedings of the 1995 Winter Simulation *  Conference", C. Alexopoulos, K. Kang, W.R. Lilegdon, and D. Goldsman *  (editors), 1995, pp. 255-262. ftp://random.mat.sbg.ac.at/pub/data/wsc95.ps *  @endblockquote * * The output sequence is defined by x(n+1) = (a*inv(x(n)) - b) (mod p), * where x(0), a, b, and the prime number p are parameters of the generator. * The expression inv(k) denotes the multiplicative inverse of k in the * field of integer numbers modulo p, with inv(0) := 0. * * The template parameter IntType shall denote a signed integral type large * enough to hold p; a, b, and p are the parameters of the generators. The * template parameter val is the validation value checked by validation. * * @xmlnote * The implementation currently uses the Euclidian Algorithm to compute * the multiplicative inverse. Therefore, the inversive generators are about * 10-20 times slower than the others (see section"performance"). However, * the paper talks of only 3x slowdown, so the Euclidian Algorithm is probably * not optimal for calculating the multiplicative inverse. * @endxmlnote */template<class IntType, IntType a, IntType b, IntType p>class inversive_congruential_engine{public:    typedef IntType result_type;    BOOST_STATIC_CONSTANT(bool, has_fixed_range = false);    BOOST_STATIC_CONSTANT(result_type, multiplier = a);    BOOST_STATIC_CONSTANT(result_type, increment = b);    BOOST_STATIC_CONSTANT(result_type, modulus = p);    BOOST_STATIC_CONSTANT(IntType, default_seed = 1);    static result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () { return b == 0 ? 1 : 0; }    static result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () { return p-1; }        /**     * Constructs an @c inversive_congruential_engine, seeding it with     * the default seed.     */    inversive_congruential_engine() { seed(); }    /**     * Constructs an @c inversive_congruential_engine, seeding it with @c x0.     */    BOOST_RANDOM_DETAIL_ARITHMETIC_CONSTRUCTOR(inversive_congruential_engine,                                               IntType, x0)    { seed(x0); }        /**     * Constructs an @c inversive_congruential_engine, seeding it with values     * produced by a call to @c seq.generate().     */    BOOST_RANDOM_DETAIL_SEED_SEQ_CONSTRUCTOR(inversive_congruential_engine,                                             SeedSeq, seq)    { seed(seq); }        /**     * Constructs an @c inversive_congruential_engine, seeds it     * with values taken from the itrator range [first, last),     * and adjusts first to point to the element after the last one     * used.  If there are not enough elements, throws @c std::invalid_argument.     *     * first and last must be input iterators.     */    template<class It> inversive_congruential_engine(It& first, It last)    { seed(first, last); }    /**     * Calls seed(default_seed)     */    void seed() { seed(default_seed); }      /**     * If c mod m is zero and x0 mod m is zero, changes the current value of     * the generator to 1. Otherwise, changes it to x0 mod m. If c is zero,     * distinct seeds in the range [1,m) will leave the generator in distinct     * states. If c is not zero, the range is [0,m).     */    BOOST_RANDOM_DETAIL_ARITHMETIC_SEED(inversive_congruential_engine, IntType, x0)    {        // wrap _x if it doesn't fit in the destination        if(modulus == 0) {            _value = x0;        } else {            _value = x0 % modulus;        }        // handle negative seeds        if(_value <= 0 && _value != 0) {            _value += modulus;        }        // adjust to the correct range        if(increment == 0 && _value == 0) {            _value = 1;        }        BOOST_ASSERT(_value >= (min)());        BOOST_ASSERT(_value <= (max)());    }    /**     * Seeds an @c inversive_congruential_engine using values from a SeedSeq.     */    BOOST_RANDOM_DETAIL_SEED_SEQ_SEED(inversive_congruential_engine, SeedSeq, seq)    { seed(detail::seed_one_int<IntType, modulus>(seq)); }        /**     * seeds an @c inversive_congruential_engine with values taken     * from the itrator range [first, last) and adjusts @c first to     * point to the element after the last one used.  If there are     * not enough elements, throws @c std::invalid_argument.     *     * @c first and @c last must be input iterators.     */    template<class It> void seed(It& first, It last)    { seed(detail::get_one_int<IntType, modulus>(first, last)); }    /** Returns the next output of the generator. */    IntType operator()()    {        typedef const_mod<IntType, p> do_mod;        _value = do_mod::mult_add(a, do_mod::invert(_value), b);        return _value;    }      /** Fills a range with random values */    template<class Iter>    void generate(Iter first, Iter last)    { detail::generate_from_int(*this, first, last); }    /** Advances the state of the generator by @c z. */    void discard(boost::uintmax_t z)    {        for(boost::uintmax_t j = 0; j < z; ++j) {            (*this)();        }    }    /**     * Writes the textual representation of the generator to a @c std::ostream.     */    BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, inversive_congruential_engine, x)    {        os << x._value;        return os;    }    /**     * Reads the textual representation of the generator from a @c std::istream.     */    BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, inversive_congruential_engine, x)    {        is >> x._value;        return is;    }    /**     * Returns true if the two generators will produce identical     * sequences of outputs.     */    BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(inversive_congruential_engine, x, y)    { return x._value == y._value; }    /**     * Returns true if the two generators will produce different     * sequences of outputs.     */    BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(inversive_congruential_engine)private:    IntType _value;};#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION//  A definition is required even for integral static constantstemplate<class IntType, IntType a, IntType b, IntType p>const bool inversive_congruential_engine<IntType, a, b, p>::has_fixed_range;template<class IntType, IntType a, IntType b, IntType p>const typename inversive_congruential_engine<IntType, a, b, p>::result_type inversive_congruential_engine<IntType, a, b, p>::multiplier;template<class IntType, IntType a, IntType b, IntType p>const typename inversive_congruential_engine<IntType, a, b, p>::result_type inversive_congruential_engine<IntType, a, b, p>::increment;template<class IntType, IntType a, IntType b, IntType p>const typename inversive_congruential_engine<IntType, a, b, p>::result_type inversive_congruential_engine<IntType, a, b, p>::modulus;template<class IntType, IntType a, IntType b, IntType p>const typename inversive_congruential_engine<IntType, a, b, p>::result_type inversive_congruential_engine<IntType, a, b, p>::default_seed;#endif/// \cond show_deprecated// provided for backwards compatibilitytemplate<class IntType, IntType a, IntType b, IntType p, IntType val = 0>class inversive_congruential : public inversive_congruential_engine<IntType, a, b, p>{    typedef inversive_congruential_engine<IntType, a, b, p> base_type;public:    inversive_congruential(IntType x0 = 1) : base_type(x0) {}    template<class It>    inversive_congruential(It& first, It last) : base_type(first, last) {}};/// \endcond/** * The specialization hellekalek1995 was suggested in * *  @blockquote *  "Inversive pseudorandom number generators: concepts, results and links", *  Peter Hellekalek, In: "Proceedings of the 1995 Winter Simulation *  Conference", C. Alexopoulos, K. Kang, W.R. Lilegdon, and D. Goldsman *  (editors), 1995, pp. 255-262. ftp://random.mat.sbg.ac.at/pub/data/wsc95.ps *  @endblockquote */typedef inversive_congruential_engine<uint32_t, 9102, 2147483647-36884165,  2147483647> hellekalek1995;} // namespace randomusing random::hellekalek1995;} // namespace boost#include <boost/random/detail/enable_warnings.hpp>#endif // BOOST_RANDOM_INVERSIVE_CONGRUENTIAL_HPP
 |