| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 | // (C) Copyright 2009 Eric Bose-Wolf//// Use, modification and distribution are subject to the// Boost Software License, Version 1.0 (See accompanying file// LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_GRAPH_TRANSITIVE_REDUCTION_HPP#define BOOST_GRAPH_TRANSITIVE_REDUCTION_HPP#include <vector>#include <algorithm> //std::find#include <boost/concept/requires.hpp>#include <boost/concept_check.hpp>#include <boost/graph/graph_traits.hpp>#include <boost/graph/topological_sort.hpp>// also I didn't got all of the concepts thin. Am I suppose to check// for all concepts, which are needed for functions I call? (As if I// wouldn't do that, the users would see the functions called by// complaining about missings concepts, which would be clearly an error// message revealing internal implementation and should therefore be avoided?)// the pseudocode which I followed implementing this algorithmn was taken// from the german book Algorithmische Graphentheorie by Volker Turau// it is proposed to be of O(n + nm_red ) where n is the number// of vertices and m_red is the number of edges in the transitive// reduction, but I think my implementation spoiled this up at some point// indicated below.namespace boost{template < typename Graph, typename GraphTR, typename G_to_TR_VertexMap,    typename VertexIndexMap >BOOST_CONCEPT_REQUIRES(    ((VertexListGraphConcept< Graph >))((IncidenceGraphConcept< Graph >))(        (MutableGraphConcept< GraphTR >))(        (ReadablePropertyMapConcept< VertexIndexMap,            typename graph_traits< Graph >::vertex_descriptor >))(        (Integer< typename property_traits< VertexIndexMap >::value_type >))(        (LvaluePropertyMapConcept< G_to_TR_VertexMap,            typename graph_traits< Graph >::vertex_descriptor >)),    (void))transitive_reduction(const Graph& g, GraphTR& tr, G_to_TR_VertexMap g_to_tr_map,    VertexIndexMap g_index_map){    typedef typename graph_traits< Graph >::vertex_descriptor Vertex;    typedef typename graph_traits< Graph >::vertex_iterator VertexIterator;    typedef typename std::vector< Vertex >::size_type size_type;    std::vector< Vertex > topo_order;    topological_sort(g, std::back_inserter(topo_order));    std::vector< size_type > topo_number_storage(num_vertices(g));    iterator_property_map< size_type*, VertexIndexMap, size_type, size_type& >        topo_number(&topo_number_storage[0], g_index_map);    {        typename std::vector< Vertex >::reverse_iterator it            = topo_order.rbegin();        size_type n = 0;        for (; it != topo_order.rend(); ++it, ++n)        {            topo_number[*it] = n;        }    }    std::vector< std::vector< bool > > edge_in_closure(        num_vertices(g), std::vector< bool >(num_vertices(g), false));    {        typename std::vector< Vertex >::reverse_iterator it            = topo_order.rbegin();        for (; it != topo_order.rend(); ++it)        {            g_to_tr_map[*it] = add_vertex(tr);        }    }    typename std::vector< Vertex >::iterator it = topo_order.begin(),                                             end = topo_order.end();    for (; it != end; ++it)    {        size_type i = topo_number[*it];        edge_in_closure[i][i] = true;        std::vector< Vertex > neighbors;        // I have to collect the successors of *it and traverse them in        // ascending topological order. I didn't know a better way, how to        // do that. So what I'm doint is, collection the successors of *it here        {            typename Graph::out_edge_iterator oi, oi_end;            for (boost::tie(oi, oi_end) = out_edges(*it, g); oi != oi_end; ++oi)            {                neighbors.push_back(target(*oi, g));            }        }        {            // and run through all vertices in topological order            typename std::vector< Vertex >::reverse_iterator rit                = topo_order.rbegin(),                rend = topo_order.rend();            for (; rit != rend; ++rit)            {                // looking if they are successors of *it                if (std::find(neighbors.begin(), neighbors.end(), *rit)                    != neighbors.end())                {                    size_type j = topo_number[*rit];                    if (not edge_in_closure[i][j])                    {                        for (size_type k = j; k < num_vertices(g); ++k)                        {                            if (not edge_in_closure[i][k])                            {                                // here we need edge_in_closure to be in                                // topological order,                                edge_in_closure[i][k] = edge_in_closure[j][k];                            }                        }                        // therefore we only access edge_in_closure only through                        // topo_number property_map                        add_edge(g_to_tr_map[*it], g_to_tr_map[*rit], tr);                    } // if ( not edge_in_                } // if (find (            } // for( typename vector<Vertex>::reverse_iterator        } // {    } // for( typename vector<Vertex>::iterator} // void transitive_reduction} // namespace boost#endif
 |