| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605 | //  (C) Copyright Jeremy Siek 1999-2001.//  Copyright (C) 2006 Trustees of Indiana University//  Authors: Douglas Gregor and Jeremy Siek// Distributed under the Boost Software License, Version 1.0. (See// accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)//  See http://www.boost.org/libs/property_map for documentation.#ifndef BOOST_PROPERTY_MAP_HPP#define BOOST_PROPERTY_MAP_HPP#include <boost/assert.hpp>#include <boost/config.hpp>#include <boost/static_assert.hpp>#include <cstddef>#include <boost/detail/iterator.hpp>#include <boost/concept/assert.hpp>#include <boost/concept_check.hpp>#include <boost/concept_archetype.hpp>#include <boost/mpl/assert.hpp>#include <boost/mpl/if.hpp>#include <boost/mpl/or.hpp>#include <boost/mpl/and.hpp>#include <boost/mpl/has_xxx.hpp>#include <boost/type_traits/is_same.hpp>namespace boost {  //=========================================================================  // property_traits class  BOOST_MPL_HAS_XXX_TRAIT_DEF(key_type)  BOOST_MPL_HAS_XXX_TRAIT_DEF(value_type)  BOOST_MPL_HAS_XXX_TRAIT_DEF(reference)  BOOST_MPL_HAS_XXX_TRAIT_DEF(category)   template<class PA>  struct is_property_map :    boost::mpl::and_<      has_key_type<PA>,      has_value_type<PA>,      has_reference<PA>,      has_category<PA>    >  {};   template <typename PA>  struct default_property_traits {    typedef typename PA::key_type key_type;    typedef typename PA::value_type value_type;    typedef typename PA::reference reference;    typedef typename PA::category   category;  };   struct null_property_traits {};   template <typename PA>  struct property_traits :    boost::mpl::if_<is_property_map<PA>,      default_property_traits<PA>,      null_property_traits>::type  {};#if 0  template <typename PA>  struct property_traits {    typedef typename PA::key_type key_type;    typedef typename PA::value_type value_type;     typedef typename PA::reference reference;    typedef typename PA::category   category;  };#endif  //=========================================================================  // property_traits category tags  namespace detail {    enum ePropertyMapID { READABLE_PA, WRITABLE_PA,                           READ_WRITE_PA, LVALUE_PA, OP_BRACKET_PA,                           RAND_ACCESS_ITER_PA, LAST_PA };  }  struct readable_property_map_tag { enum { id = detail::READABLE_PA }; };  struct writable_property_map_tag { enum { id = detail::WRITABLE_PA }; };  struct read_write_property_map_tag :    public readable_property_map_tag,    public writable_property_map_tag  { enum { id = detail::READ_WRITE_PA }; };  struct lvalue_property_map_tag : public read_write_property_map_tag  { enum { id = detail::LVALUE_PA }; };  //=========================================================================  // property_traits specialization for pointers  template <class T>  struct property_traits<T*> {    // BOOST_STATIC_ASSERT(boost::is_same<T, T*>::value && !"Using pointers as property maps is deprecated");    typedef T value_type;    typedef value_type& reference;    typedef std::ptrdiff_t key_type;    typedef lvalue_property_map_tag category;  };  template <class T>  struct property_traits<const T*> {    // BOOST_STATIC_ASSERT(boost::is_same<T, T*>::value && !"Using pointers as property maps is deprecated");    typedef T value_type;    typedef const value_type& reference;    typedef std::ptrdiff_t key_type;    typedef lvalue_property_map_tag category;  };#if !defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)  // MSVC doesn't have Koenig lookup, so the user has to  // do boost::get() anyways, and the using clause  // doesn't really work for MSVC.} // namespace boost#endif  // These need to go in global namespace because Koenig  // lookup does not apply to T*.  // V must be convertible to T  template <class T, class V>  inline void put(T* pa, std::ptrdiff_t k, const V& val) { pa[k] = val;  }  template <class T>  inline const T& get(const T* pa, std::ptrdiff_t k) { return pa[k]; }#if !defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)namespace boost {  using ::put;  using ::get;#endif  //=========================================================================  // concept checks for property maps  template <class PMap, class Key>  struct ReadablePropertyMapConcept  {    typedef typename property_traits<PMap>::key_type key_type;    typedef typename property_traits<PMap>::reference reference;    typedef typename property_traits<PMap>::category Category;    typedef boost::readable_property_map_tag ReadableTag;    void constraints() {      BOOST_CONCEPT_ASSERT((ConvertibleConcept<Category, ReadableTag>));      val = get(pmap, k);    }    PMap pmap;    Key k;    typename property_traits<PMap>::value_type val;  };  template <typename KeyArchetype, typename ValueArchetype>  struct readable_property_map_archetype {    typedef KeyArchetype key_type;    typedef ValueArchetype value_type;    typedef convertible_to_archetype<ValueArchetype> reference;    typedef readable_property_map_tag category;  };  template <typename K, typename V>  const typename readable_property_map_archetype<K,V>::reference&  get(const readable_property_map_archetype<K,V>&,       const typename readable_property_map_archetype<K,V>::key_type&)  {    typedef typename readable_property_map_archetype<K,V>::reference R;    return static_object<R>::get();  }  template <class PMap, class Key>  struct WritablePropertyMapConcept  {    typedef typename property_traits<PMap>::key_type key_type;    typedef typename property_traits<PMap>::category Category;    typedef boost::writable_property_map_tag WritableTag;    void constraints() {      BOOST_CONCEPT_ASSERT((ConvertibleConcept<Category, WritableTag>));      put(pmap, k, val);    }    PMap pmap;    Key k;    typename property_traits<PMap>::value_type val;  };  template <typename KeyArchetype, typename ValueArchetype>  struct writable_property_map_archetype {    typedef KeyArchetype key_type;    typedef ValueArchetype value_type;    typedef void reference;    typedef writable_property_map_tag category;  };  template <typename K, typename V>  void put(const writable_property_map_archetype<K,V>&,            const typename writable_property_map_archetype<K,V>::key_type&,            const typename writable_property_map_archetype<K,V>::value_type&) { }  template <class PMap, class Key>  struct ReadWritePropertyMapConcept  {    typedef typename property_traits<PMap>::category Category;    typedef boost::read_write_property_map_tag ReadWriteTag;    void constraints() {      BOOST_CONCEPT_ASSERT((ReadablePropertyMapConcept<PMap, Key>));      BOOST_CONCEPT_ASSERT((WritablePropertyMapConcept<PMap, Key>));      BOOST_CONCEPT_ASSERT((ConvertibleConcept<Category, ReadWriteTag>));    }  };  template <typename KeyArchetype, typename ValueArchetype>  struct read_write_property_map_archetype    : public readable_property_map_archetype<KeyArchetype, ValueArchetype>,      public writable_property_map_archetype<KeyArchetype, ValueArchetype>  {    typedef KeyArchetype key_type;    typedef ValueArchetype value_type;    typedef convertible_to_archetype<ValueArchetype> reference;    typedef read_write_property_map_tag category;  };  template <class PMap, class Key>  struct LvaluePropertyMapConcept  {    typedef typename property_traits<PMap>::category Category;    typedef boost::lvalue_property_map_tag LvalueTag;    typedef typename property_traits<PMap>::reference reference;    void constraints() {      BOOST_CONCEPT_ASSERT((ReadablePropertyMapConcept<PMap, Key>));      BOOST_CONCEPT_ASSERT((ConvertibleConcept<Category, LvalueTag>));      typedef typename property_traits<PMap>::value_type value_type;      BOOST_MPL_ASSERT((boost::mpl::or_<                          boost::is_same<const value_type&, reference>,                          boost::is_same<value_type&, reference> >));      reference ref = pmap[k];      ignore_unused_variable_warning(ref);    }    PMap pmap;    Key k;  };  template <typename KeyArchetype, typename ValueArchetype>  struct lvalue_property_map_archetype    : public readable_property_map_archetype<KeyArchetype, ValueArchetype>  {    typedef KeyArchetype key_type;    typedef ValueArchetype value_type;    typedef const ValueArchetype& reference;    typedef lvalue_property_map_tag category;    const value_type& operator[](const key_type&) const {      return static_object<value_type>::get();    }  };  template <class PMap, class Key>  struct Mutable_LvaluePropertyMapConcept  {    typedef typename property_traits<PMap>::category Category;    typedef boost::lvalue_property_map_tag LvalueTag;    typedef typename property_traits<PMap>::reference reference;    void constraints() {      BOOST_CONCEPT_ASSERT((ReadWritePropertyMapConcept<PMap, Key>));      BOOST_CONCEPT_ASSERT((ConvertibleConcept<Category, LvalueTag>));      typedef typename property_traits<PMap>::value_type value_type;      BOOST_MPL_ASSERT((boost::is_same<value_type&, reference>));      reference ref = pmap[k];      ignore_unused_variable_warning(ref);    }    PMap pmap;    Key k;  };  template <typename KeyArchetype, typename ValueArchetype>  struct mutable_lvalue_property_map_archetype    : public readable_property_map_archetype<KeyArchetype, ValueArchetype>,      public writable_property_map_archetype<KeyArchetype, ValueArchetype>  {    typedef KeyArchetype key_type;    typedef ValueArchetype value_type;    typedef ValueArchetype& reference;    typedef lvalue_property_map_tag category;    value_type& operator[](const key_type&) const {       return static_object<value_type>::get();    }  };  template <typename T>  struct typed_identity_property_map;  // A helper class for constructing a property map  // from a class that implements operator[]  template <class Reference, class LvaluePropertyMap>  struct put_get_helper { };  template <class PropertyMap, class Reference, class K>  inline Reference  get(const put_get_helper<Reference, PropertyMap>& pa, const K& k)  {    Reference v = static_cast<const PropertyMap&>(pa)[k];    return v;  }  template <class PropertyMap, class Reference, class K, class V>  inline void  put(const put_get_helper<Reference, PropertyMap>& pa, K k, const V& v)  {    static_cast<const PropertyMap&>(pa)[k] = v;  }  //=========================================================================  // Adapter to turn a RandomAccessIterator into a property map  template <class RandomAccessIterator,     class IndexMap#ifdef BOOST_NO_STD_ITERATOR_TRAITS    , class T, class R#else    , class T = typename std::iterator_traits<RandomAccessIterator>::value_type    , class R = typename std::iterator_traits<RandomAccessIterator>::reference#endif     >  class iterator_property_map    : public boost::put_get_helper< R,         iterator_property_map<RandomAccessIterator, IndexMap,        T, R> >  {  public:    typedef typename property_traits<IndexMap>::key_type key_type;    typedef T value_type;    typedef R reference;    typedef boost::lvalue_property_map_tag category;    inline iterator_property_map(      RandomAccessIterator cc = RandomAccessIterator(),       const IndexMap& _id = IndexMap() )       : iter(cc), index(_id) { }    inline R operator[](key_type v) const { return *(iter + get(index, v)) ; }  protected:    RandomAccessIterator iter;    IndexMap index;  };#if !defined BOOST_NO_STD_ITERATOR_TRAITS  template <class RAIter, class ID>  inline iterator_property_map<    RAIter, ID,    typename std::iterator_traits<RAIter>::value_type,    typename std::iterator_traits<RAIter>::reference>  make_iterator_property_map(RAIter iter, ID id) {    BOOST_CONCEPT_ASSERT((RandomAccessIteratorConcept<RAIter>));    typedef iterator_property_map<      RAIter, ID,      typename std::iterator_traits<RAIter>::value_type,      typename std::iterator_traits<RAIter>::reference> PA;    return PA(iter, id);  }#endif  template <class RAIter, class Value, class ID>  inline iterator_property_map<RAIter, ID, Value, Value&>  make_iterator_property_map(RAIter iter, ID id, Value) {    BOOST_CONCEPT_ASSERT((RandomAccessIteratorConcept<RAIter>));    typedef iterator_property_map<RAIter, ID, Value, Value&> PMap;    return PMap(iter, id);  }  template <class RandomAccessIterator,     class IndexMap#ifdef BOOST_NO_STD_ITERATOR_TRAITS    , class T, class R#else    , class T = typename std::iterator_traits<RandomAccessIterator>::value_type    , class R = typename std::iterator_traits<RandomAccessIterator>::reference#endif     >  class safe_iterator_property_map    : public boost::put_get_helper< R,         safe_iterator_property_map<RandomAccessIterator, IndexMap,        T, R> >  {  public:    typedef typename property_traits<IndexMap>::key_type key_type;     typedef T value_type;    typedef R reference;    typedef boost::lvalue_property_map_tag category;    inline safe_iterator_property_map(      RandomAccessIterator first,       std::size_t n_ = 0,       const IndexMap& _id = IndexMap() )       : iter(first), n(n_), index(_id) { }    inline safe_iterator_property_map() { }    inline R operator[](key_type v) const {      BOOST_ASSERT(get(index, v) < n);      return *(iter + get(index, v)) ;    }    typename property_traits<IndexMap>::value_type size() const { return n; }  protected:    RandomAccessIterator iter;    typename property_traits<IndexMap>::value_type n;    IndexMap index;  };  template <class RAIter, class ID>  inline safe_iterator_property_map<    RAIter, ID,    typename boost::detail::iterator_traits<RAIter>::value_type,    typename boost::detail::iterator_traits<RAIter>::reference>  make_safe_iterator_property_map(RAIter iter, std::size_t n, ID id) {    BOOST_CONCEPT_ASSERT((RandomAccessIteratorConcept<RAIter>));    typedef safe_iterator_property_map<      RAIter, ID,      typename boost::detail::iterator_traits<RAIter>::value_type,      typename boost::detail::iterator_traits<RAIter>::reference> PA;    return PA(iter, n, id);  }  template <class RAIter, class Value, class ID>  inline safe_iterator_property_map<RAIter, ID, Value, Value&>  make_safe_iterator_property_map(RAIter iter, std::size_t n, ID id, Value) {    BOOST_CONCEPT_ASSERT((RandomAccessIteratorConcept<RAIter>));    typedef safe_iterator_property_map<RAIter, ID, Value, Value&> PMap;    return PMap(iter, n, id);  }  //=========================================================================  // An adaptor to turn a Unique Pair Associative Container like std::map or  // std::hash_map into an Lvalue Property Map.  template <typename UniquePairAssociativeContainer>  class associative_property_map    : public boost::put_get_helper<       typename UniquePairAssociativeContainer::value_type::second_type&,       associative_property_map<UniquePairAssociativeContainer> >  {    typedef UniquePairAssociativeContainer C;  public:    typedef typename C::key_type key_type;    typedef typename C::value_type::second_type value_type;    typedef value_type& reference;    typedef lvalue_property_map_tag category;    associative_property_map() : m_c(0) { }    associative_property_map(C& c) : m_c(&c) { }    reference operator[](const key_type& k) const {      return (*m_c)[k];    }  private:    C* m_c;  };  template <class UniquePairAssociativeContainer>  associative_property_map<UniquePairAssociativeContainer>  make_assoc_property_map(UniquePairAssociativeContainer& c)  {    return associative_property_map<UniquePairAssociativeContainer>(c);  }  template <typename UniquePairAssociativeContainer>  class const_associative_property_map    : public boost::put_get_helper<       const typename UniquePairAssociativeContainer::value_type::second_type&,       const_associative_property_map<UniquePairAssociativeContainer> >  {    typedef UniquePairAssociativeContainer C;  public:    typedef typename C::key_type key_type;    typedef typename C::value_type::second_type value_type;    typedef const value_type& reference;    typedef lvalue_property_map_tag category;    const_associative_property_map() : m_c(0) { }    const_associative_property_map(const C& c) : m_c(&c) { }    reference operator[](const key_type& k) const {      return m_c->find(k)->second;    }  private:    C const* m_c;  };    template <class UniquePairAssociativeContainer>  const_associative_property_map<UniquePairAssociativeContainer>  make_assoc_property_map(const UniquePairAssociativeContainer& c)  {    return const_associative_property_map<UniquePairAssociativeContainer>(c);  }  //=========================================================================  // A property map that always returns the same object by value.  //  template <typename ValueType, typename KeyType = void>  class static_property_map :      public  boost::put_get_helper<ValueType,static_property_map<ValueType> >  {     ValueType value;  public:    typedef KeyType key_type;    typedef ValueType value_type;    typedef ValueType reference;    typedef readable_property_map_tag category;    static_property_map(ValueType v) : value(v) {}        template<typename T>    inline reference operator[](T) const { return value; }  };  template <typename KeyType, typename ValueType>  static_property_map<ValueType, KeyType>  make_static_property_map(const ValueType& v) {    return static_property_map<ValueType, KeyType>(v);  }  //=========================================================================  // A property map that always returns a reference to the same object.  //  template <typename KeyType, typename ValueType>  class ref_property_map :    public      boost::put_get_helper<ValueType&,ref_property_map<KeyType,ValueType> >  {     ValueType* value;  public:    typedef KeyType key_type;    typedef ValueType value_type;    typedef ValueType& reference;    typedef lvalue_property_map_tag category;    ref_property_map(ValueType& v) : value(&v) {}    ValueType& operator[](key_type const&) const { return *value; }  };  //=========================================================================  // A generalized identity property map  template <typename T>  struct typed_identity_property_map    : public boost::put_get_helper<T, typed_identity_property_map<T> >  {    typedef T key_type;    typedef T value_type;    typedef T reference;    typedef boost::readable_property_map_tag category;    inline value_type operator[](const key_type& v) const { return v; }  };//=========================================================================  // A property map that applies the identity function to integers  typedef typed_identity_property_map<std::size_t> identity_property_map;  //=========================================================================  // A property map that does not do anything, for  // when you have to supply a property map, but don't need it.  namespace detail {    struct dummy_pmap_reference {      template <class T>      dummy_pmap_reference& operator=(const T&) { return *this; }      operator int() { return 0; }    };  }  class dummy_property_map     : public boost::put_get_helper<detail::dummy_pmap_reference,        dummy_property_map  >   {  public:    typedef void key_type;     typedef int value_type;    typedef detail::dummy_pmap_reference reference;    typedef boost::read_write_property_map_tag category;    inline dummy_property_map() : c(0) { }    inline dummy_property_map(value_type cc) : c(cc) { }    inline dummy_property_map(const dummy_property_map& x)      : c(x.c) { }    template <class Vertex>    inline reference operator[](Vertex) const { return reference(); }   protected:    value_type c;  };  // Convert a Readable property map into a function object  template <typename PropMap>  class property_map_function {    PropMap pm;    typedef typename property_traits<PropMap>::key_type param_type;    public:    explicit property_map_function(const PropMap& pm): pm(pm) {}    typedef typename property_traits<PropMap>::value_type result_type;    result_type operator()(const param_type& k) const {return get(pm, k);}  };  template <typename PropMap>  property_map_function<PropMap>  make_property_map_function(const PropMap& pm) {    return property_map_function<PropMap>(pm);  }} // namespace boost#ifdef BOOST_GRAPH_USE_MPI#include <boost/property_map/parallel/parallel_property_maps.hpp>#endif#include <boost/property_map/vector_property_map.hpp>#endif /* BOOST_PROPERTY_MAP_HPP */
 |