| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823 | //---------------------------------------------------------------------------//// Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>//// Distributed under the Boost Software License, Version 1.0// See accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt//// See http://boostorg.github.com/compute for more information.//---------------------------------------------------------------------------//#ifndef BOOST_COMPUTE_CONTAINER_VECTOR_HPP#define BOOST_COMPUTE_CONTAINER_VECTOR_HPP#include <vector>#include <cstddef>#include <iterator>#include <exception>#include <boost/throw_exception.hpp>#include <boost/compute/config.hpp>#ifndef BOOST_COMPUTE_NO_HDR_INITIALIZER_LIST#include <initializer_list>#endif#include <boost/compute/buffer.hpp>#include <boost/compute/device.hpp>#include <boost/compute/system.hpp>#include <boost/compute/context.hpp>#include <boost/compute/command_queue.hpp>#include <boost/compute/algorithm/copy.hpp>#include <boost/compute/algorithm/copy_n.hpp>#include <boost/compute/algorithm/fill_n.hpp>#include <boost/compute/allocator/buffer_allocator.hpp>#include <boost/compute/iterator/buffer_iterator.hpp>#include <boost/compute/type_traits/detail/capture_traits.hpp>#include <boost/compute/detail/buffer_value.hpp>#include <boost/compute/detail/iterator_range_size.hpp>namespace boost {namespace compute {/// \class vector/// \brief A resizable array of values.////// The vector<T> class stores a dynamic array of values. Internally, the data/// is stored in an OpenCL buffer object.////// The vector class is the prefered container for storing and accessing data/// on a compute device. In most cases it should be used instead of directly/// dealing with buffer objects. If the undelying buffer is needed, it can be/// accessed with the get_buffer() method.////// The internal storage is allocated in a specific OpenCL context which is/// passed as an argument to the constructor when the vector is created.////// For example, to create a vector on the device containing space for ten/// \c int values:/// \code/// boost::compute::vector<int> vec(10, context);/// \endcode////// Allocation and data transfer can also be performed in a single step:/// \code/// // values on the host/// int data[] = { 1, 2, 3, 4 };////// // create a vector of size four and copy the values from data/// boost::compute::vector<int> vec(data, data + 4, queue);/// \endcode////// The Boost.Compute \c vector class provides a STL-like API and is modeled/// after the \c std::vector class from the C++ standard library. It can be/// used with any of the STL-like algorithms provided by Boost.Compute/// including \c copy(), \c transform(), and \c sort() (among many others).////// For example:/// \code/// // a vector on a compute device/// boost::compute::vector<float> vec = ...////// // copy data to the vector from a host std:vector/// boost::compute::copy(host_vec.begin(), host_vec.end(), vec.begin(), queue);////// // copy data from the vector to a host std::vector/// boost::compute::copy(vec.begin(), vec.end(), host_vec.begin(), queue);////// // sort the values in the vector/// boost::compute::sort(vec.begin(), vec.end(), queue);////// // calculate the sum of the values in the vector (also see reduce())/// float sum = boost::compute::accumulate(vec.begin(), vec.end(), 0, queue);////// // reverse the values in the vector/// boost::compute::reverse(vec.begin(), vec.end(), queue);////// // fill the vector with ones/// boost::compute::fill(vec.begin(), vec.end(), 1, queue);/// \endcode////// \see \ref array "array<T, N>", buffertemplate<class T, class Alloc = buffer_allocator<T> >class vector{public:    typedef T value_type;    typedef Alloc allocator_type;    typedef typename allocator_type::size_type size_type;    typedef typename allocator_type::difference_type difference_type;    typedef detail::buffer_value<T> reference;    typedef const detail::buffer_value<T> const_reference;    typedef typename allocator_type::pointer pointer;    typedef typename allocator_type::const_pointer const_pointer;    typedef buffer_iterator<T> iterator;    typedef buffer_iterator<T> const_iterator;    typedef std::reverse_iterator<iterator> reverse_iterator;    typedef std::reverse_iterator<const_iterator> const_reverse_iterator;    /// Creates an empty vector in \p context.    explicit vector(const context &context = system::default_context())        : m_size(0),          m_allocator(context)    {        m_data = m_allocator.allocate(_minimum_capacity());    }    /// Creates a vector with space for \p count elements in \p context.    ///    /// Note that unlike \c std::vector's constructor, this will not initialize    /// the values in the container. Either call the vector constructor which    /// takes a value to initialize with or use the fill() algorithm to set    /// the initial values.    ///    /// For example:    /// \code    /// // create a vector on the device with space for ten ints    /// boost::compute::vector<int> vec(10, context);    /// \endcode    explicit vector(size_type count,                    const context &context = system::default_context())        : m_size(count),          m_allocator(context)    {        m_data = m_allocator.allocate((std::max)(count, _minimum_capacity()));    }    /// Creates a vector with space for \p count elements and sets each equal    /// to \p value.    ///    /// For example:    /// \code    /// // creates a vector with four values set to nine (e.g. [9, 9, 9, 9]).    /// boost::compute::vector<int> vec(4, 9, queue);    /// \endcode    vector(size_type count,           const T &value,           command_queue &queue = system::default_queue())        : m_size(count),          m_allocator(queue.get_context())    {        m_data = m_allocator.allocate((std::max)(count, _minimum_capacity()));        ::boost::compute::fill_n(begin(), count, value, queue);    }    /// Creates a vector with space for the values in the range [\p first,    /// \p last) and copies them into the vector with \p queue.    ///    /// For example:    /// \code    /// // values on the host    /// int data[] = { 1, 2, 3, 4 };    ///    /// // create a vector of size four and copy the values from data    /// boost::compute::vector<int> vec(data, data + 4, queue);    /// \endcode    template<class InputIterator>    vector(InputIterator first,           InputIterator last,           command_queue &queue = system::default_queue())        : m_size(detail::iterator_range_size(first, last)),          m_allocator(queue.get_context())    {        m_data = m_allocator.allocate((std::max)(m_size, _minimum_capacity()));        ::boost::compute::copy(first, last, begin(), queue);    }    /// Creates a new vector and copies the values from \p other.    vector(const vector &other,           command_queue &queue = system::default_queue())        : m_size(other.m_size),          m_allocator(other.m_allocator)    {        m_data = m_allocator.allocate((std::max)(m_size, _minimum_capacity()));        if(!other.empty()){            if(other.get_buffer().get_context() != queue.get_context()){                command_queue other_queue = other.default_queue();                ::boost::compute::copy(other.begin(), other.end(), begin(), other_queue);                other_queue.finish();            }            else {                ::boost::compute::copy(other.begin(), other.end(), begin(), queue);                queue.finish();            }        }    }    /// Creates a new vector and copies the values from \p other.    template<class OtherAlloc>    vector(const vector<T, OtherAlloc> &other,           command_queue &queue = system::default_queue())        : m_size(other.size()),          m_allocator(queue.get_context())    {        m_data = m_allocator.allocate((std::max)(m_size, _minimum_capacity()));        if(!other.empty()){            ::boost::compute::copy(other.begin(), other.end(), begin(), queue);            queue.finish();        }    }    /// Creates a new vector and copies the values from \p vector.    template<class OtherAlloc>    vector(const std::vector<T, OtherAlloc> &vector,           command_queue &queue = system::default_queue())        : m_size(vector.size()),          m_allocator(queue.get_context())    {        m_data = m_allocator.allocate((std::max)(m_size, _minimum_capacity()));        ::boost::compute::copy(vector.begin(), vector.end(), begin(), queue);    }    #ifndef BOOST_COMPUTE_NO_HDR_INITIALIZER_LIST    vector(std::initializer_list<T> list,           command_queue &queue = system::default_queue())        : m_size(list.size()),          m_allocator(queue.get_context())    {        m_data = m_allocator.allocate((std::max)(m_size, _minimum_capacity()));        ::boost::compute::copy(list.begin(), list.end(), begin(), queue);    }    #endif // BOOST_COMPUTE_NO_HDR_INITIALIZER_LIST    vector& operator=(const vector &other)    {        if(this != &other){            command_queue queue = default_queue();            resize(other.size(), queue);            ::boost::compute::copy(other.begin(), other.end(), begin(), queue);            queue.finish();        }        return *this;    }    template<class OtherAlloc>    vector& operator=(const vector<T, OtherAlloc> &other)    {        command_queue queue = default_queue();        resize(other.size(), queue);        ::boost::compute::copy(other.begin(), other.end(), begin(), queue);        queue.finish();        return *this;    }    template<class OtherAlloc>    vector& operator=(const std::vector<T, OtherAlloc> &vector)    {        command_queue queue = default_queue();        resize(vector.size(), queue);        ::boost::compute::copy(vector.begin(), vector.end(), begin(), queue);        queue.finish();        return *this;    }    #ifndef BOOST_COMPUTE_NO_RVALUE_REFERENCES    /// Move-constructs a new vector from \p other.    vector(vector&& other)        : m_data(std::move(other.m_data)),          m_size(other.m_size),          m_allocator(std::move(other.m_allocator))    {        other.m_size = 0;    }    /// Move-assigns the data from \p other to \c *this.    vector& operator=(vector&& other)    {        if(capacity() > 0){            m_allocator.deallocate(m_data, capacity());        }        m_data = std::move(other.m_data);        m_size = other.m_size;        m_allocator = std::move(other.m_allocator);        other.m_size = 0;        return *this;    }    #endif // BOOST_COMPUTE_NO_RVALUE_REFERENCES    /// Destroys the vector object.    ~vector()    {        if(capacity() > 0){            m_allocator.deallocate(m_data, capacity());        }    }    iterator begin()    {        return ::boost::compute::make_buffer_iterator<T>(m_data.get_buffer(), 0);    }    const_iterator begin() const    {        return ::boost::compute::make_buffer_iterator<T>(m_data.get_buffer(), 0);    }    const_iterator cbegin() const    {        return begin();    }    iterator end()    {        return ::boost::compute::make_buffer_iterator<T>(m_data.get_buffer(), m_size);    }    const_iterator end() const    {        return ::boost::compute::make_buffer_iterator<T>(m_data.get_buffer(), m_size);    }    const_iterator cend() const    {        return end();    }    reverse_iterator rbegin()    {        return reverse_iterator(end() - 1);    }    const_reverse_iterator rbegin() const    {        return reverse_iterator(end() - 1);    }    const_reverse_iterator crbegin() const    {        return rbegin();    }    reverse_iterator rend()    {        return reverse_iterator(begin() - 1);    }    const_reverse_iterator rend() const    {        return reverse_iterator(begin() - 1);    }    const_reverse_iterator crend() const    {        return rend();    }    /// Returns the number of elements in the vector.    size_type size() const    {        return m_size;    }    size_type max_size() const    {        return m_allocator.max_size();    }    /// Resizes the vector to \p size.    void resize(size_type size, command_queue &queue)    {        if(size <= capacity()){            m_size = size;        }        else {            // allocate new buffer            pointer new_data =                m_allocator.allocate(                    static_cast<size_type>(                        static_cast<float>(size) * _growth_factor()                    )                );            if(capacity() > 0)            {                // copy old values to the new buffer                ::boost::compute::copy(m_data, m_data + m_size, new_data, queue);                // free old memory                m_allocator.deallocate(m_data, capacity());            }            // set new data and size            m_data = new_data;            m_size = size;        }    }    /// \overload    void resize(size_type size)    {        command_queue queue = default_queue();        resize(size, queue);        queue.finish();    }    /// Returns \c true if the vector is empty.    bool empty() const    {        return m_size == 0;    }    /// Returns the capacity of the vector.    size_type capacity() const    {        if(m_data == pointer()) // null pointer check        {            return 0;        }        return m_data.get_buffer().size() / sizeof(T);    }    void reserve(size_type size, command_queue &queue)    {        if(size > max_size()){            throw std::length_error("vector::reserve");        }        if(capacity() < size){            // allocate new buffer            pointer new_data =                m_allocator.allocate(                    static_cast<size_type>(                        static_cast<float>(size) * _growth_factor()                    )                );            if(capacity() > 0)            {                // copy old values to the new buffer                ::boost::compute::copy(m_data, m_data + m_size, new_data, queue);                // free old memory                m_allocator.deallocate(m_data, capacity());            }            // set new data            m_data = new_data;        }    }    void reserve(size_type size)    {        command_queue queue = default_queue();        reserve(size, queue);        queue.finish();    }    void shrink_to_fit(command_queue &queue)    {        pointer old_data = m_data;        m_data = pointer(); // null pointer        if(m_size > 0)        {            // allocate new buffer            m_data = m_allocator.allocate(m_size);            // copy old values to the new buffer            ::boost::compute::copy(old_data, old_data + m_size, m_data, queue);        }        if(capacity() > 0)        {            // free old memory            m_allocator.deallocate(old_data, capacity());        }    }    void shrink_to_fit()    {        command_queue queue = default_queue();        shrink_to_fit(queue);        queue.finish();    }    reference operator[](size_type index)    {        return *(begin() + static_cast<difference_type>(index));    }    const_reference operator[](size_type index) const    {        return *(begin() + static_cast<difference_type>(index));    }    reference at(size_type index)    {        if(index >= size()){            BOOST_THROW_EXCEPTION(std::out_of_range("index out of range"));        }        return operator[](index);    }    const_reference at(size_type index) const    {        if(index >= size()){            BOOST_THROW_EXCEPTION(std::out_of_range("index out of range"));        }        return operator[](index);    }    reference front()    {        return *begin();    }    const_reference front() const    {        return *begin();    }    reference back()    {        return *(end() - static_cast<difference_type>(1));    }    const_reference back() const    {        return *(end() - static_cast<difference_type>(1));    }    template<class InputIterator>    void assign(InputIterator first,                InputIterator last,                command_queue &queue)    {        // resize vector for new contents        resize(detail::iterator_range_size(first, last), queue);        // copy values into the vector        ::boost::compute::copy(first, last, begin(), queue);    }    template<class InputIterator>    void assign(InputIterator first, InputIterator last)    {        command_queue queue = default_queue();        assign(first, last, queue);        queue.finish();    }    void assign(size_type n, const T &value, command_queue &queue)    {        // resize vector for new contents        resize(n, queue);        // fill vector with value        ::boost::compute::fill_n(begin(), n, value, queue);    }    void assign(size_type n, const T &value)    {        command_queue queue = default_queue();        assign(n, value, queue);        queue.finish();    }    /// Inserts \p value at the end of the vector (resizing if neccessary).    ///    /// Note that calling \c push_back() to insert data values one at a time    /// is inefficient as there is a non-trivial overhead in performing a data    /// transfer to the device. It is usually better to store a set of values    /// on the host (for example, in a \c std::vector) and then transfer them    /// in bulk using the \c insert() method or the copy() algorithm.    void push_back(const T &value, command_queue &queue)    {        insert(end(), value, queue);    }    /// \overload    void push_back(const T &value)    {        command_queue queue = default_queue();        push_back(value, queue);        queue.finish();    }    void pop_back(command_queue &queue)    {        resize(size() - 1, queue);    }    void pop_back()    {        command_queue queue = default_queue();        pop_back(queue);        queue.finish();    }    iterator insert(iterator position, const T &value, command_queue &queue)    {        if(position == end()){            resize(m_size + 1, queue);            position = begin() + position.get_index();            ::boost::compute::copy_n(&value, 1, position, queue);        }        else {            ::boost::compute::vector<T, Alloc> tmp(position, end(), queue);            resize(m_size + 1, queue);            position = begin() + position.get_index();            ::boost::compute::copy_n(&value, 1, position, queue);            ::boost::compute::copy(tmp.begin(), tmp.end(), position + 1, queue);        }        return position + 1;    }    iterator insert(iterator position, const T &value)    {        command_queue queue = default_queue();        iterator iter = insert(position, value, queue);        queue.finish();        return iter;    }    void insert(iterator position,                size_type count,                const T &value,                command_queue &queue)    {        ::boost::compute::vector<T, Alloc> tmp(position, end(), queue);        resize(size() + count, queue);        position = begin() + position.get_index();        ::boost::compute::fill_n(position, count, value, queue);        ::boost::compute::copy(            tmp.begin(),            tmp.end(),            position + static_cast<difference_type>(count),            queue        );    }    void insert(iterator position, size_type count, const T &value)    {        command_queue queue = default_queue();        insert(position, count, value, queue);        queue.finish();    }    /// Inserts the values in the range [\p first, \p last) into the vector at    /// \p position using \p queue.    template<class InputIterator>    void insert(iterator position,                InputIterator first,                InputIterator last,                command_queue &queue)    {        ::boost::compute::vector<T, Alloc> tmp(position, end(), queue);        size_type count = detail::iterator_range_size(first, last);        resize(size() + count, queue);        position = begin() + position.get_index();        ::boost::compute::copy(first, last, position, queue);        ::boost::compute::copy(            tmp.begin(),            tmp.end(),            position + static_cast<difference_type>(count),            queue        );    }    /// \overload    template<class InputIterator>    void insert(iterator position, InputIterator first, InputIterator last)    {        command_queue queue = default_queue();        insert(position, first, last, queue);        queue.finish();    }    iterator erase(iterator position, command_queue &queue)    {        return erase(position, position + 1, queue);    }    iterator erase(iterator position)    {        command_queue queue = default_queue();        iterator iter = erase(position, queue);        queue.finish();        return iter;    }    iterator erase(iterator first, iterator last, command_queue &queue)    {        if(last != end()){            ::boost::compute::vector<T, Alloc> tmp(last, end(), queue);            ::boost::compute::copy(tmp.begin(), tmp.end(), first, queue);        }        difference_type count = std::distance(first, last);        resize(size() - static_cast<size_type>(count), queue);        return begin() + first.get_index() + count;    }    iterator erase(iterator first, iterator last)    {        command_queue queue = default_queue();        iterator iter = erase(first, last, queue);        queue.finish();        return iter;    }    /// Swaps the contents of \c *this with \p other.    void swap(vector &other)    {        std::swap(m_data, other.m_data);        std::swap(m_size, other.m_size);        std::swap(m_allocator, other.m_allocator);    }    /// Removes all elements from the vector.    void clear()    {        m_size = 0;    }    allocator_type get_allocator() const    {        return m_allocator;    }    /// Returns the underlying buffer.    const buffer& get_buffer() const    {        return m_data.get_buffer();    }    /// \internal_    ///    /// Returns a command queue usable to issue commands for the vector's    /// memory buffer. This is used when a member function is called without    /// specifying an existing command queue to use.    command_queue default_queue() const    {        const context &context = m_allocator.get_context();        command_queue queue(context, context.get_device());        return queue;    }private:    /// \internal_    BOOST_CONSTEXPR size_type _minimum_capacity() const { return 4; }    /// \internal_    BOOST_CONSTEXPR float _growth_factor() const { return 1.5; }private:    pointer m_data;    size_type m_size;    allocator_type m_allocator;};namespace detail {// set_kernel_arg specialization for vector<T>template<class T, class Alloc>struct set_kernel_arg<vector<T, Alloc> >{    void operator()(kernel &kernel_, size_t index, const vector<T, Alloc> &vector)    {        kernel_.set_arg(index, vector.get_buffer());    }};// for capturing vector<T> with BOOST_COMPUTE_CLOSURE()template<class T, class Alloc>struct capture_traits<vector<T, Alloc> >{    static std::string type_name()    {        return std::string("__global ") + ::boost::compute::type_name<T>() + "*";    }};// meta_kernel streaming operator for vector<T>template<class T, class Alloc>meta_kernel& operator<<(meta_kernel &k, const vector<T, Alloc> &vector){  return k << k.get_buffer_identifier<T>(vector.get_buffer());}} // end detail namespace} // end compute namespace} // end boost namespace#endif // BOOST_COMPUTE_CONTAINER_VECTOR_HPP
 |