| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246 | //  (C) Copyright John Maddock 2006.//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_MATH_SPECIAL_ERF_HPP#define BOOST_MATH_SPECIAL_ERF_HPP#ifdef _MSC_VER#pragma once#endif#include <boost/math/special_functions/math_fwd.hpp>#include <boost/math/tools/config.hpp>#include <boost/math/special_functions/gamma.hpp>#include <boost/math/tools/roots.hpp>#include <boost/math/policies/error_handling.hpp>#include <boost/math/tools/big_constant.hpp>#if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)//// This is the only way we can avoid// warning: non-standard suffix on floating constant [-Wpedantic]// when building with -Wall -pedantic.  Neither __extension__// nor #pragma diagnostic ignored work :(//#pragma GCC system_header#endifnamespace boost{ namespace math{namespace detail{//// Asymptotic series for large z://template <class T>struct erf_asympt_series_t{   erf_asympt_series_t(T z) : xx(2 * -z * z), tk(1)   {      BOOST_MATH_STD_USING      result = -exp(-z * z) / sqrt(boost::math::constants::pi<T>());      result /= z;   }   typedef T result_type;   T operator()()   {      BOOST_MATH_STD_USING      T r = result;      result *= tk / xx;      tk += 2;      if( fabs(r) < fabs(result))         result = 0;      return r;   }private:   T result;   T xx;   int tk;};//// How large z has to be in order to ensure that the series converges://template <class T>inline float erf_asymptotic_limit_N(const T&){   return (std::numeric_limits<float>::max)();}inline float erf_asymptotic_limit_N(const boost::integral_constant<int, 24>&){   return 2.8F;}inline float erf_asymptotic_limit_N(const boost::integral_constant<int, 53>&){   return 4.3F;}inline float erf_asymptotic_limit_N(const boost::integral_constant<int, 64>&){   return 4.8F;}inline float erf_asymptotic_limit_N(const boost::integral_constant<int, 106>&){   return 6.5F;}inline float erf_asymptotic_limit_N(const boost::integral_constant<int, 113>&){   return 6.8F;}template <class T, class Policy>inline T erf_asymptotic_limit(){   typedef typename policies::precision<T, Policy>::type precision_type;   typedef boost::integral_constant<int,      precision_type::value <= 0 ? 0 :      precision_type::value <= 24 ? 24 :      precision_type::value <= 53 ? 53 :      precision_type::value <= 64 ? 64 :      precision_type::value <= 113 ? 113 : 0   > tag_type;   return erf_asymptotic_limit_N(tag_type());}template <class T, class Policy, class Tag>T erf_imp(T z, bool invert, const Policy& pol, const Tag& t){   BOOST_MATH_STD_USING   BOOST_MATH_INSTRUMENT_CODE("Generic erf_imp called");   if(z < 0)   {      if(!invert)         return -erf_imp(T(-z), invert, pol, t);      else         return 1 + erf_imp(T(-z), false, pol, t);   }   T result;   if(!invert && (z > detail::erf_asymptotic_limit<T, Policy>()))   {      detail::erf_asympt_series_t<T> s(z);      boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();      result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, 1);      policies::check_series_iterations<T>("boost::math::erf<%1%>(%1%, %1%)", max_iter, pol);   }   else   {      T x = z * z;      if(x < 0.6)      {         // Compute P:         result = z * exp(-x);         result /= sqrt(boost::math::constants::pi<T>());         if(result != 0)            result *= 2 * detail::lower_gamma_series(T(0.5f), x, pol);      }      else if(x < 1.1f)      {         // Compute Q:         invert = !invert;         result = tgamma_small_upper_part(T(0.5f), x, pol);         result /= sqrt(boost::math::constants::pi<T>());      }      else if(x > 1 / tools::epsilon<T>())      {         // http://functions.wolfram.com/06.27.06.0006.02         invert = !invert;         result = exp(-x) / (constants::root_pi<T>() * z);      }      else      {         // Compute Q:         invert = !invert;         result = z * exp(-x);         result /= boost::math::constants::root_pi<T>();         result *= upper_gamma_fraction(T(0.5f), x, policies::get_epsilon<T, Policy>());      }   }   if(invert)      result = 1 - result;   return result;}template <class T, class Policy>T erf_imp(T z, bool invert, const Policy& pol, const boost::integral_constant<int, 53>& t){   BOOST_MATH_STD_USING   BOOST_MATH_INSTRUMENT_CODE("53-bit precision erf_imp called");   if ((boost::math::isnan)(z))      return policies::raise_denorm_error("boost::math::erf<%1%>(%1%)", "Expected a finite argument but got %1%", z, pol);   if(z < 0)   {      if(!invert)         return -erf_imp(T(-z), invert, pol, t);      else if(z < -0.5)         return 2 - erf_imp(T(-z), invert, pol, t);      else         return 1 + erf_imp(T(-z), false, pol, t);   }   T result;   //   // Big bunch of selection statements now to pick   // which implementation to use,   // try to put most likely options first:   //   if(z < 0.5)   {      //      // We're going to calculate erf:      //      if(z < 1e-10)      {         if(z == 0)         {            result = T(0);         }         else         {            static const T c = BOOST_MATH_BIG_CONSTANT(T, 53, 0.003379167095512573896158903121545171688);            result = static_cast<T>(z * 1.125f + z * c);         }      }      else      {         // Maximum Deviation Found:                     1.561e-17         // Expected Error Term:                         1.561e-17         // Maximum Relative Change in Control Points:   1.155e-04         // Max Error found at double precision =        2.961182e-17         static const T Y = 1.044948577880859375f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 53, 0.0834305892146531832907),            BOOST_MATH_BIG_CONSTANT(T, 53, -0.338165134459360935041),            BOOST_MATH_BIG_CONSTANT(T, 53, -0.0509990735146777432841),            BOOST_MATH_BIG_CONSTANT(T, 53, -0.00772758345802133288487),            BOOST_MATH_BIG_CONSTANT(T, 53, -0.000322780120964605683831),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.455004033050794024546),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.0875222600142252549554),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.00858571925074406212772),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.000370900071787748000569),         };         T zz = z * z;         result = z * (Y + tools::evaluate_polynomial(P, zz) / tools::evaluate_polynomial(Q, zz));      }   }   else if(invert ? (z < 28) : (z < 5.8f))   {      //      // We'll be calculating erfc:      //      invert = !invert;      if(z < 1.5f)      {         // Maximum Deviation Found:                     3.702e-17         // Expected Error Term:                         3.702e-17         // Maximum Relative Change in Control Points:   2.845e-04         // Max Error found at double precision =        4.841816e-17         static const T Y = 0.405935764312744140625f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 53, -0.098090592216281240205),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.178114665841120341155),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.191003695796775433986),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.0888900368967884466578),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.0195049001251218801359),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.00180424538297014223957),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 53, 1.84759070983002217845),            BOOST_MATH_BIG_CONSTANT(T, 53, 1.42628004845511324508),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.578052804889902404909),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.12385097467900864233),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.0113385233577001411017),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.337511472483094676155e-5),         };         BOOST_MATH_INSTRUMENT_VARIABLE(Y);         BOOST_MATH_INSTRUMENT_VARIABLE(P[0]);         BOOST_MATH_INSTRUMENT_VARIABLE(Q[0]);         BOOST_MATH_INSTRUMENT_VARIABLE(z);         result = Y + tools::evaluate_polynomial(P, T(z - 0.5)) / tools::evaluate_polynomial(Q, T(z - 0.5));         BOOST_MATH_INSTRUMENT_VARIABLE(result);         result *= exp(-z * z) / z;         BOOST_MATH_INSTRUMENT_VARIABLE(result);      }      else if(z < 2.5f)      {         // Max Error found at double precision =        6.599585e-18         // Maximum Deviation Found:                     3.909e-18         // Expected Error Term:                         3.909e-18         // Maximum Relative Change in Control Points:   9.886e-05         static const T Y = 0.50672817230224609375f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 53, -0.0243500476207698441272),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.0386540375035707201728),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.04394818964209516296),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.0175679436311802092299),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.00323962406290842133584),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.000235839115596880717416),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 53, 1.53991494948552447182),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.982403709157920235114),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.325732924782444448493),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.0563921837420478160373),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.00410369723978904575884),         };         result = Y + tools::evaluate_polynomial(P, T(z - 1.5)) / tools::evaluate_polynomial(Q, T(z - 1.5));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 26));         hi = ldexp(hi, expon - 26);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }      else if(z < 4.5f)      {         // Maximum Deviation Found:                     1.512e-17         // Expected Error Term:                         1.512e-17         // Maximum Relative Change in Control Points:   2.222e-04         // Max Error found at double precision =        2.062515e-17         static const T Y = 0.5405750274658203125f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 53, 0.00295276716530971662634),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.0137384425896355332126),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.00840807615555585383007),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.00212825620914618649141),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.000250269961544794627958),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.113212406648847561139e-4),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 53, 1.04217814166938418171),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.442597659481563127003),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.0958492726301061423444),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.0105982906484876531489),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.000479411269521714493907),         };         result = Y + tools::evaluate_polynomial(P, T(z - 3.5)) / tools::evaluate_polynomial(Q, T(z - 3.5));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 26));         hi = ldexp(hi, expon - 26);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }      else      {         // Max Error found at double precision =        2.997958e-17         // Maximum Deviation Found:                     2.860e-17         // Expected Error Term:                         2.859e-17         // Maximum Relative Change in Control Points:   1.357e-05         static const T Y = 0.5579090118408203125f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 53, 0.00628057170626964891937),            BOOST_MATH_BIG_CONSTANT(T, 53, 0.0175389834052493308818),            BOOST_MATH_BIG_CONSTANT(T, 53, -0.212652252872804219852),            BOOST_MATH_BIG_CONSTANT(T, 53, -0.687717681153649930619),            BOOST_MATH_BIG_CONSTANT(T, 53, -2.5518551727311523996),            BOOST_MATH_BIG_CONSTANT(T, 53, -3.22729451764143718517),            BOOST_MATH_BIG_CONSTANT(T, 53, -2.8175401114513378771),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 53, 2.79257750980575282228),            BOOST_MATH_BIG_CONSTANT(T, 53, 11.0567237927800161565),            BOOST_MATH_BIG_CONSTANT(T, 53, 15.930646027911794143),            BOOST_MATH_BIG_CONSTANT(T, 53, 22.9367376522880577224),            BOOST_MATH_BIG_CONSTANT(T, 53, 13.5064170191802889145),            BOOST_MATH_BIG_CONSTANT(T, 53, 5.48409182238641741584),         };         result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 26));         hi = ldexp(hi, expon - 26);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }   }   else   {      //      // Any value of z larger than 28 will underflow to zero:      //      result = 0;      invert = !invert;   }   if(invert)   {      result = 1 - result;   }   return result;} // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const boost::integral_constant<int, 53>& t)template <class T, class Policy>T erf_imp(T z, bool invert, const Policy& pol, const boost::integral_constant<int, 64>& t){   BOOST_MATH_STD_USING   BOOST_MATH_INSTRUMENT_CODE("64-bit precision erf_imp called");   if(z < 0)   {      if(!invert)         return -erf_imp(T(-z), invert, pol, t);      else if(z < -0.5)         return 2 - erf_imp(T(-z), invert, pol, t);      else         return 1 + erf_imp(T(-z), false, pol, t);   }   T result;   //   // Big bunch of selection statements now to pick which   // implementation to use, try to put most likely options   // first:   //   if(z < 0.5)   {      //      // We're going to calculate erf:      //      if(z == 0)      {         result = 0;      }      else if(z < 1e-10)      {         static const T c = BOOST_MATH_BIG_CONSTANT(T, 64, 0.003379167095512573896158903121545171688);         result = z * 1.125 + z * c;      }      else      {         // Max Error found at long double precision =   1.623299e-20         // Maximum Deviation Found:                     4.326e-22         // Expected Error Term:                         -4.326e-22         // Maximum Relative Change in Control Points:   1.474e-04         static const T Y = 1.044948577880859375f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 64, 0.0834305892146531988966),            BOOST_MATH_BIG_CONSTANT(T, 64, -0.338097283075565413695),            BOOST_MATH_BIG_CONSTANT(T, 64, -0.0509602734406067204596),            BOOST_MATH_BIG_CONSTANT(T, 64, -0.00904906346158537794396),            BOOST_MATH_BIG_CONSTANT(T, 64, -0.000489468651464798669181),            BOOST_MATH_BIG_CONSTANT(T, 64, -0.200305626366151877759e-4),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.455817300515875172439),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.0916537354356241792007),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.0102722652675910031202),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.000650511752687851548735),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.189532519105655496778e-4),         };         result = z * (Y + tools::evaluate_polynomial(P, T(z * z)) / tools::evaluate_polynomial(Q, T(z * z)));      }   }   else if(invert ? (z < 110) : (z < 6.4f))   {      //      // We'll be calculating erfc:      //      invert = !invert;      if(z < 1.5)      {         // Max Error found at long double precision =   3.239590e-20         // Maximum Deviation Found:                     2.241e-20         // Expected Error Term:                         -2.241e-20         // Maximum Relative Change in Control Points:   5.110e-03         static const T Y = 0.405935764312744140625f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 64, -0.0980905922162812031672),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.159989089922969141329),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.222359821619935712378),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.127303921703577362312),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.0384057530342762400273),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.00628431160851156719325),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.000441266654514391746428),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.266689068336295642561e-7),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 64, 2.03237474985469469291),            BOOST_MATH_BIG_CONSTANT(T, 64, 1.78355454954969405222),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.867940326293760578231),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.248025606990021698392),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.0396649631833002269861),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.00279220237309449026796),         };         result = Y + tools::evaluate_polynomial(P, T(z - 0.5f)) / tools::evaluate_polynomial(Q, T(z - 0.5f));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 32));         hi = ldexp(hi, expon - 32);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }      else if(z < 2.5)      {         // Max Error found at long double precision =   3.686211e-21         // Maximum Deviation Found:                     1.495e-21         // Expected Error Term:                         -1.494e-21         // Maximum Relative Change in Control Points:   1.793e-04         static const T Y = 0.50672817230224609375f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 64, -0.024350047620769840217),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.0343522687935671451309),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.0505420824305544949541),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.0257479325917757388209),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.00669349844190354356118),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.00090807914416099524444),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.515917266698050027934e-4),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 64, 1.71657861671930336344),            BOOST_MATH_BIG_CONSTANT(T, 64, 1.26409634824280366218),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.512371437838969015941),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.120902623051120950935),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.0158027197831887485261),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.000897871370778031611439),         };         result = Y + tools::evaluate_polynomial(P, T(z - 1.5f)) / tools::evaluate_polynomial(Q, T(z - 1.5f));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 32));         hi = ldexp(hi, expon - 32);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }      else if(z < 4.5)      {         // Maximum Deviation Found:                     1.107e-20         // Expected Error Term:                         -1.106e-20         // Maximum Relative Change in Control Points:   1.709e-04         // Max Error found at long double precision =   1.446908e-20         static const T Y  = 0.5405750274658203125f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 64, 0.0029527671653097284033),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.0141853245895495604051),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.0104959584626432293901),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.00343963795976100077626),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.00059065441194877637899),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.523435380636174008685e-4),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.189896043050331257262e-5),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 64, 1.19352160185285642574),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.603256964363454392857),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.165411142458540585835),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.0259729870946203166468),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.00221657568292893699158),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.804149464190309799804e-4),         };         result = Y + tools::evaluate_polynomial(P, T(z - 3.5f)) / tools::evaluate_polynomial(Q, T(z - 3.5f));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 32));         hi = ldexp(hi, expon - 32);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }      else      {         // Max Error found at long double precision =   7.961166e-21         // Maximum Deviation Found:                     6.677e-21         // Expected Error Term:                         6.676e-21         // Maximum Relative Change in Control Points:   2.319e-05         static const T Y = 0.55825519561767578125f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 64, 0.00593438793008050214106),            BOOST_MATH_BIG_CONSTANT(T, 64, 0.0280666231009089713937),            BOOST_MATH_BIG_CONSTANT(T, 64, -0.141597835204583050043),            BOOST_MATH_BIG_CONSTANT(T, 64, -0.978088201154300548842),            BOOST_MATH_BIG_CONSTANT(T, 64, -5.47351527796012049443),            BOOST_MATH_BIG_CONSTANT(T, 64, -13.8677304660245326627),            BOOST_MATH_BIG_CONSTANT(T, 64, -27.1274948720539821722),            BOOST_MATH_BIG_CONSTANT(T, 64, -29.2545152747009461519),            BOOST_MATH_BIG_CONSTANT(T, 64, -16.8865774499799676937),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 64, 4.72948911186645394541),            BOOST_MATH_BIG_CONSTANT(T, 64, 23.6750543147695749212),            BOOST_MATH_BIG_CONSTANT(T, 64, 60.0021517335693186785),            BOOST_MATH_BIG_CONSTANT(T, 64, 131.766251645149522868),            BOOST_MATH_BIG_CONSTANT(T, 64, 178.167924971283482513),            BOOST_MATH_BIG_CONSTANT(T, 64, 182.499390505915222699),            BOOST_MATH_BIG_CONSTANT(T, 64, 104.365251479578577989),            BOOST_MATH_BIG_CONSTANT(T, 64, 30.8365511891224291717),         };         result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 32));         hi = ldexp(hi, expon - 32);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }   }   else   {      //      // Any value of z larger than 110 will underflow to zero:      //      result = 0;      invert = !invert;   }   if(invert)   {      result = 1 - result;   }   return result;} // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const boost::integral_constant<int, 64>& t)template <class T, class Policy>T erf_imp(T z, bool invert, const Policy& pol, const boost::integral_constant<int, 113>& t){   BOOST_MATH_STD_USING   BOOST_MATH_INSTRUMENT_CODE("113-bit precision erf_imp called");   if(z < 0)   {      if(!invert)         return -erf_imp(T(-z), invert, pol, t);      else if(z < -0.5)         return 2 - erf_imp(T(-z), invert, pol, t);      else         return 1 + erf_imp(T(-z), false, pol, t);   }   T result;   //   // Big bunch of selection statements now to pick which   // implementation to use, try to put most likely options   // first:   //   if(z < 0.5)   {      //      // We're going to calculate erf:      //      if(z == 0)      {         result = 0;      }      else if(z < 1e-20)      {         static const T c = BOOST_MATH_BIG_CONSTANT(T, 113, 0.003379167095512573896158903121545171688);         result = z * 1.125 + z * c;      }      else      {         // Max Error found at long double precision =   2.342380e-35         // Maximum Deviation Found:                     6.124e-36         // Expected Error Term:                         -6.124e-36         // Maximum Relative Change in Control Points:   3.492e-10         static const T Y = 1.0841522216796875f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, 0.0442269454158250738961589031215451778),            BOOST_MATH_BIG_CONSTANT(T, 113, -0.35549265736002144875335323556961233),            BOOST_MATH_BIG_CONSTANT(T, 113, -0.0582179564566667896225454670863270393),            BOOST_MATH_BIG_CONSTANT(T, 113, -0.0112694696904802304229950538453123925),            BOOST_MATH_BIG_CONSTANT(T, 113, -0.000805730648981801146251825329609079099),            BOOST_MATH_BIG_CONSTANT(T, 113, -0.566304966591936566229702842075966273e-4),            BOOST_MATH_BIG_CONSTANT(T, 113, -0.169655010425186987820201021510002265e-5),            BOOST_MATH_BIG_CONSTANT(T, 113, -0.344448249920445916714548295433198544e-7),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.466542092785657604666906909196052522),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.100005087012526447295176964142107611),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0128341535890117646540050072234142603),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00107150448466867929159660677016658186),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.586168368028999183607733369248338474e-4),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.196230608502104324965623171516808796e-5),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.313388521582925207734229967907890146e-7),         };         result = z * (Y + tools::evaluate_polynomial(P, T(z * z)) / tools::evaluate_polynomial(Q, T(z * z)));      }   }   else if(invert ? (z < 110) : (z < 8.65f))   {      //      // We'll be calculating erfc:      //      invert = !invert;      if(z < 1)      {         // Max Error found at long double precision =   3.246278e-35         // Maximum Deviation Found:                     1.388e-35         // Expected Error Term:                         1.387e-35         // Maximum Relative Change in Control Points:   6.127e-05         static const T Y = 0.371877193450927734375f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, -0.0640320213544647969396032886581290455),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.200769874440155895637857443946706731),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.378447199873537170666487408805779826),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.30521399466465939450398642044975127),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.146890026406815277906781824723458196),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0464837937749539978247589252732769567),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00987895759019540115099100165904822903),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00137507575429025512038051025154301132),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0001144764551085935580772512359680516),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.436544865032836914773944382339900079e-5),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 113, 2.47651182872457465043733800302427977),            BOOST_MATH_BIG_CONSTANT(T, 113, 2.78706486002517996428836400245547955),            BOOST_MATH_BIG_CONSTANT(T, 113, 1.87295924621659627926365005293130693),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.829375825174365625428280908787261065),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.251334771307848291593780143950311514),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0522110268876176186719436765734722473),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00718332151250963182233267040106902368),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.000595279058621482041084986219276392459),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.226988669466501655990637599399326874e-4),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.270666232259029102353426738909226413e-10),         };         result = Y + tools::evaluate_polynomial(P, T(z - 0.5f)) / tools::evaluate_polynomial(Q, T(z - 0.5f));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 56));         hi = ldexp(hi, expon - 56);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }      else if(z < 1.5)      {         // Max Error found at long double precision =   2.215785e-35         // Maximum Deviation Found:                     1.539e-35         // Expected Error Term:                         1.538e-35         // Maximum Relative Change in Control Points:   6.104e-05         static const T Y = 0.45658016204833984375f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, -0.0289965858925328393392496555094848345),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0868181194868601184627743162571779226),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.169373435121178901746317404936356745),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.13350446515949251201104889028133486),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0617447837290183627136837688446313313),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0185618495228251406703152962489700468),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00371949406491883508764162050169531013),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.000485121708792921297742105775823900772),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.376494706741453489892108068231400061e-4),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.133166058052466262415271732172490045e-5),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 113, 2.32970330146503867261275580968135126),            BOOST_MATH_BIG_CONSTANT(T, 113, 2.46325715420422771961250513514928746),            BOOST_MATH_BIG_CONSTANT(T, 113, 1.55307882560757679068505047390857842),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.644274289865972449441174485441409076),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.182609091063258208068606847453955649),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0354171651271241474946129665801606795),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00454060370165285246451879969534083997),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.000349871943711566546821198612518656486),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.123749319840299552925421880481085392e-4),         };         result = Y + tools::evaluate_polynomial(P, T(z - 1.0f)) / tools::evaluate_polynomial(Q, T(z - 1.0f));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 56));         hi = ldexp(hi, expon - 56);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }      else if(z < 2.25)      {         // Maximum Deviation Found:                     1.418e-35         // Expected Error Term:                         1.418e-35         // Maximum Relative Change in Control Points:   1.316e-04         // Max Error found at long double precision =   1.998462e-35         static const T Y = 0.50250148773193359375f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, -0.0201233630504573402185161184151016606),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0331864357574860196516686996302305002),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0716562720864787193337475444413405461),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0545835322082103985114927569724880658),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0236692635189696678976549720784989593),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00656970902163248872837262539337601845),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00120282643299089441390490459256235021),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.000142123229065182650020762792081622986),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.991531438367015135346716277792989347e-5),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.312857043762117596999398067153076051e-6),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 113, 2.13506082409097783827103424943508554),            BOOST_MATH_BIG_CONSTANT(T, 113, 2.06399257267556230937723190496806215),            BOOST_MATH_BIG_CONSTANT(T, 113, 1.18678481279932541314830499880691109),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.447733186643051752513538142316799562),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.11505680005657879437196953047542148),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.020163993632192726170219663831914034),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00232708971840141388847728782209730585),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.000160733201627963528519726484608224112),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.507158721790721802724402992033269266e-5),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.18647774409821470950544212696270639e-12),         };         result = Y + tools::evaluate_polynomial(P, T(z - 1.5f)) / tools::evaluate_polynomial(Q, T(z - 1.5f));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 56));         hi = ldexp(hi, expon - 56);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }      else if (z < 3)      {         // Maximum Deviation Found:                     3.575e-36         // Expected Error Term:                         3.575e-36         // Maximum Relative Change in Control Points:   7.103e-05         // Max Error found at long double precision =   5.794737e-36         static const T Y = 0.52896785736083984375f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, -0.00902152521745813634562524098263360074),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0145207142776691539346923710537580927),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0301681239582193983824211995978678571),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0215548540823305814379020678660434461),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00864683476267958365678294164340749949),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00219693096885585491739823283511049902),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.000364961639163319762492184502159894371),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.388174251026723752769264051548703059e-4),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.241918026931789436000532513553594321e-5),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.676586625472423508158937481943649258e-7),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 113, 1.93669171363907292305550231764920001),            BOOST_MATH_BIG_CONSTANT(T, 113, 1.69468476144051356810672506101377494),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.880023580986436640372794392579985511),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.299099106711315090710836273697708402),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0690593962363545715997445583603382337),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0108427016361318921960863149875360222),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00111747247208044534520499324234317695),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.686843205749767250666787987163701209e-4),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.192093541425429248675532015101904262e-5),         };         result = Y + tools::evaluate_polynomial(P, T(z - 2.25f)) / tools::evaluate_polynomial(Q, T(z - 2.25f));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 56));         hi = ldexp(hi, expon - 56);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }      else if(z < 3.5)      {         // Maximum Deviation Found:                     8.126e-37         // Expected Error Term:                         -8.126e-37         // Maximum Relative Change in Control Points:   1.363e-04         // Max Error found at long double precision =   1.747062e-36         static const T Y = 0.54037380218505859375f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, -0.0033703486408887424921155540591370375),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0104948043110005245215286678898115811),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0148530118504000311502310457390417795),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00816693029245443090102738825536188916),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00249716579989140882491939681805594585),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0004655591010047353023978045800916647),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.531129557920045295895085236636025323e-4),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.343526765122727069515775194111741049e-5),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.971120407556888763695313774578711839e-7),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 113, 1.59911256167540354915906501335919317),            BOOST_MATH_BIG_CONSTANT(T, 113, 1.136006830764025173864831382946934),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.468565867990030871678574840738423023),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.122821824954470343413956476900662236),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0209670914950115943338996513330141633),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00227845718243186165620199012883547257),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.000144243326443913171313947613547085553),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.407763415954267700941230249989140046e-5),         };         result = Y + tools::evaluate_polynomial(P, T(z - 3.0f)) / tools::evaluate_polynomial(Q, T(z - 3.0f));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 56));         hi = ldexp(hi, expon - 56);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }      else if(z < 5.5)      {         // Maximum Deviation Found:                     5.804e-36         // Expected Error Term:                         -5.803e-36         // Maximum Relative Change in Control Points:   2.475e-05         // Max Error found at long double precision =   1.349545e-35         static const T Y = 0.55000019073486328125f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, 0.00118142849742309772151454518093813615),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0072201822885703318172366893469382745),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0078782276276860110721875733778481505),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00418229166204362376187593976656261146),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00134198400587769200074194304298642705),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.000283210387078004063264777611497435572),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.405687064094911866569295610914844928e-4),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.39348283801568113807887364414008292e-5),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.248798540917787001526976889284624449e-6),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.929502490223452372919607105387474751e-8),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.156161469668275442569286723236274457e-9),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 113, 1.52955245103668419479878456656709381),            BOOST_MATH_BIG_CONSTANT(T, 113, 1.06263944820093830054635017117417064),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.441684612681607364321013134378316463),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.121665258426166960049773715928906382),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0232134512374747691424978642874321434),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00310778180686296328582860464875562636),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.000288361770756174705123674838640161693),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.177529187194133944622193191942300132e-4),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.655068544833064069223029299070876623e-6),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.11005507545746069573608988651927452e-7),         };         result = Y + tools::evaluate_polynomial(P, T(z - 4.5f)) / tools::evaluate_polynomial(Q, T(z - 4.5f));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 56));         hi = ldexp(hi, expon - 56);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }      else if(z < 7.5)      {         // Maximum Deviation Found:                     1.007e-36         // Expected Error Term:                         1.007e-36         // Maximum Relative Change in Control Points:   1.027e-03         // Max Error found at long double precision =   2.646420e-36         static const T Y = 0.5574436187744140625f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, 0.000293236907400849056269309713064107674),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00225110719535060642692275221961480162),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00190984458121502831421717207849429799),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.000747757733460111743833929141001680706),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.000170663175280949889583158597373928096),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.246441188958013822253071608197514058e-4),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.229818000860544644974205957895688106e-5),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.134886977703388748488480980637704864e-6),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.454764611880548962757125070106650958e-8),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.673002744115866600294723141176820155e-10),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 113, 1.12843690320861239631195353379313367),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.569900657061622955362493442186537259),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.169094404206844928112348730277514273),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0324887449084220415058158657252147063),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00419252877436825753042680842608219552),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00036344133176118603523976748563178578),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.204123895931375107397698245752850347e-4),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.674128352521481412232785122943508729e-6),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.997637501418963696542159244436245077e-8),         };         result = Y + tools::evaluate_polynomial(P, T(z - 6.5f)) / tools::evaluate_polynomial(Q, T(z - 6.5f));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 56));         hi = ldexp(hi, expon - 56);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }      else if(z < 11.5)      {         // Maximum Deviation Found:                     8.380e-36         // Expected Error Term:                         8.380e-36         // Maximum Relative Change in Control Points:   2.632e-06         // Max Error found at long double precision =   9.849522e-36         static const T Y = 0.56083202362060546875f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, 0.000282420728751494363613829834891390121),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00175387065018002823433704079355125161),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0021344978564889819420775336322920375),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00124151356560137532655039683963075661),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.000423600733566948018555157026862139644),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.914030340865175237133613697319509698e-4),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.126999927156823363353809747017945494e-4),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.110610959842869849776179749369376402e-5),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.55075079477173482096725348704634529e-7),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.119735694018906705225870691331543806e-8),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 113, 1.69889613396167354566098060039549882),            BOOST_MATH_BIG_CONSTANT(T, 113, 1.28824647372749624464956031163282674),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.572297795434934493541628008224078717),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.164157697425571712377043857240773164),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.0315311145224594430281219516531649562),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00405588922155632380812945849777127458),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.000336929033691445666232029762868642417),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.164033049810404773469413526427932109e-4),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.356615210500531410114914617294694857e-6),         };         result = Y + tools::evaluate_polynomial(P, T(z / 2 - 4.75f)) / tools::evaluate_polynomial(Q, T(z / 2 - 4.75f));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 56));         hi = ldexp(hi, expon - 56);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }      else      {         // Maximum Deviation Found:                     1.132e-35         // Expected Error Term:                         -1.132e-35         // Maximum Relative Change in Control Points:   4.674e-04         // Max Error found at long double precision =   1.162590e-35         static const T Y = 0.5632686614990234375f;         static const T P[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, 0.000920922048732849448079451574171836943),            BOOST_MATH_BIG_CONSTANT(T, 113, 0.00321439044532288750501700028748922439),            BOOST_MATH_BIG_CONSTANT(T, 113, -0.250455263029390118657884864261823431),            BOOST_MATH_BIG_CONSTANT(T, 113, -0.906807635364090342031792404764598142),            BOOST_MATH_BIG_CONSTANT(T, 113, -8.92233572835991735876688745989985565),            BOOST_MATH_BIG_CONSTANT(T, 113, -21.7797433494422564811782116907878495),            BOOST_MATH_BIG_CONSTANT(T, 113, -91.1451915251976354349734589601171659),            BOOST_MATH_BIG_CONSTANT(T, 113, -144.1279109655993927069052125017673),            BOOST_MATH_BIG_CONSTANT(T, 113, -313.845076581796338665519022313775589),            BOOST_MATH_BIG_CONSTANT(T, 113, -273.11378811923343424081101235736475),            BOOST_MATH_BIG_CONSTANT(T, 113, -271.651566205951067025696102600443452),            BOOST_MATH_BIG_CONSTANT(T, 113, -60.0530577077238079968843307523245547),         };         static const T Q[] = {                BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),            BOOST_MATH_BIG_CONSTANT(T, 113, 3.49040448075464744191022350947892036),            BOOST_MATH_BIG_CONSTANT(T, 113, 34.3563592467165971295915749548313227),            BOOST_MATH_BIG_CONSTANT(T, 113, 84.4993232033879023178285731843850461),            BOOST_MATH_BIG_CONSTANT(T, 113, 376.005865281206894120659401340373818),            BOOST_MATH_BIG_CONSTANT(T, 113, 629.95369438888946233003926191755125),            BOOST_MATH_BIG_CONSTANT(T, 113, 1568.35771983533158591604513304269098),            BOOST_MATH_BIG_CONSTANT(T, 113, 1646.02452040831961063640827116581021),            BOOST_MATH_BIG_CONSTANT(T, 113, 2299.96860633240298708910425594484895),            BOOST_MATH_BIG_CONSTANT(T, 113, 1222.73204392037452750381340219906374),            BOOST_MATH_BIG_CONSTANT(T, 113, 799.359797306084372350264298361110448),            BOOST_MATH_BIG_CONSTANT(T, 113, 72.7415265778588087243442792401576737),         };         result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z));         T hi, lo;         int expon;         hi = floor(ldexp(frexp(z, &expon), 56));         hi = ldexp(hi, expon - 56);         lo = z - hi;         T sq = z * z;         T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;         result *= exp(-sq) * exp(-err_sqr) / z;      }   }   else   {      //      // Any value of z larger than 110 will underflow to zero:      //      result = 0;      invert = !invert;   }   if(invert)   {      result = 1 - result;   }   return result;} // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const boost::integral_constant<int, 113>& t)template <class T, class Policy, class tag>struct erf_initializer{   struct init   {      init()      {         do_init(tag());      }      static void do_init(const boost::integral_constant<int, 0>&){}      static void do_init(const boost::integral_constant<int, 53>&)      {         boost::math::erf(static_cast<T>(1e-12), Policy());         boost::math::erf(static_cast<T>(0.25), Policy());         boost::math::erf(static_cast<T>(1.25), Policy());         boost::math::erf(static_cast<T>(2.25), Policy());         boost::math::erf(static_cast<T>(4.25), Policy());         boost::math::erf(static_cast<T>(5.25), Policy());      }      static void do_init(const boost::integral_constant<int, 64>&)      {         boost::math::erf(static_cast<T>(1e-12), Policy());         boost::math::erf(static_cast<T>(0.25), Policy());         boost::math::erf(static_cast<T>(1.25), Policy());         boost::math::erf(static_cast<T>(2.25), Policy());         boost::math::erf(static_cast<T>(4.25), Policy());         boost::math::erf(static_cast<T>(5.25), Policy());      }      static void do_init(const boost::integral_constant<int, 113>&)      {         boost::math::erf(static_cast<T>(1e-22), Policy());         boost::math::erf(static_cast<T>(0.25), Policy());         boost::math::erf(static_cast<T>(1.25), Policy());         boost::math::erf(static_cast<T>(2.125), Policy());         boost::math::erf(static_cast<T>(2.75), Policy());         boost::math::erf(static_cast<T>(3.25), Policy());         boost::math::erf(static_cast<T>(5.25), Policy());         boost::math::erf(static_cast<T>(7.25), Policy());         boost::math::erf(static_cast<T>(11.25), Policy());         boost::math::erf(static_cast<T>(12.5), Policy());      }      void force_instantiate()const{}   };   static const init initializer;   static void force_instantiate()   {      initializer.force_instantiate();   }};template <class T, class Policy, class tag>const typename erf_initializer<T, Policy, tag>::init erf_initializer<T, Policy, tag>::initializer;} // namespace detailtemplate <class T, class Policy>inline typename tools::promote_args<T>::type erf(T z, const Policy& /* pol */){   typedef typename tools::promote_args<T>::type result_type;   typedef typename policies::evaluation<result_type, Policy>::type value_type;   typedef typename policies::precision<result_type, Policy>::type precision_type;   typedef typename policies::normalise<      Policy,       policies::promote_float<false>,       policies::promote_double<false>,       policies::discrete_quantile<>,      policies::assert_undefined<> >::type forwarding_policy;   BOOST_MATH_INSTRUMENT_CODE("result_type = " << typeid(result_type).name());   BOOST_MATH_INSTRUMENT_CODE("value_type = " << typeid(value_type).name());   BOOST_MATH_INSTRUMENT_CODE("precision_type = " << typeid(precision_type).name());   typedef boost::integral_constant<int,      precision_type::value <= 0 ? 0 :      precision_type::value <= 53 ? 53 :      precision_type::value <= 64 ? 64 :      precision_type::value <= 113 ? 113 : 0   > tag_type;   BOOST_MATH_INSTRUMENT_CODE("tag_type = " << typeid(tag_type).name());   detail::erf_initializer<value_type, forwarding_policy, tag_type>::force_instantiate(); // Force constants to be initialized before main   return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::erf_imp(      static_cast<value_type>(z),      false,      forwarding_policy(),      tag_type()), "boost::math::erf<%1%>(%1%, %1%)");}template <class T, class Policy>inline typename tools::promote_args<T>::type erfc(T z, const Policy& /* pol */){   typedef typename tools::promote_args<T>::type result_type;   typedef typename policies::evaluation<result_type, Policy>::type value_type;   typedef typename policies::precision<result_type, Policy>::type precision_type;   typedef typename policies::normalise<      Policy,       policies::promote_float<false>,       policies::promote_double<false>,       policies::discrete_quantile<>,      policies::assert_undefined<> >::type forwarding_policy;   BOOST_MATH_INSTRUMENT_CODE("result_type = " << typeid(result_type).name());   BOOST_MATH_INSTRUMENT_CODE("value_type = " << typeid(value_type).name());   BOOST_MATH_INSTRUMENT_CODE("precision_type = " << typeid(precision_type).name());   typedef boost::integral_constant<int,      precision_type::value <= 0 ? 0 :      precision_type::value <= 53 ? 53 :      precision_type::value <= 64 ? 64 :      precision_type::value <= 113 ? 113 : 0   > tag_type;   BOOST_MATH_INSTRUMENT_CODE("tag_type = " << typeid(tag_type).name());   detail::erf_initializer<value_type, forwarding_policy, tag_type>::force_instantiate(); // Force constants to be initialized before main   return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::erf_imp(      static_cast<value_type>(z),      true,      forwarding_policy(),      tag_type()), "boost::math::erfc<%1%>(%1%, %1%)");}template <class T>inline typename tools::promote_args<T>::type erf(T z){   return boost::math::erf(z, policies::policy<>());}template <class T>inline typename tools::promote_args<T>::type erfc(T z){   return boost::math::erfc(z, policies::policy<>());}} // namespace math} // namespace boost#include <boost/math/special_functions/detail/erf_inv.hpp>#endif // BOOST_MATH_SPECIAL_ERF_HPP
 |