| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 | //// detail/timer_queue.hpp// ~~~~~~~~~~~~~~~~~~~~~~//// Copyright (c) 2003-2020 Christopher M. Kohlhoff (chris at kohlhoff dot com)//// Distributed under the Boost Software License, Version 1.0. (See accompanying// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)//#ifndef BOOST_ASIO_DETAIL_TIMER_QUEUE_HPP#define BOOST_ASIO_DETAIL_TIMER_QUEUE_HPP#if defined(_MSC_VER) && (_MSC_VER >= 1200)# pragma once#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)#include <boost/asio/detail/config.hpp>#include <cstddef>#include <vector>#include <boost/asio/detail/cstdint.hpp>#include <boost/asio/detail/date_time_fwd.hpp>#include <boost/asio/detail/limits.hpp>#include <boost/asio/detail/op_queue.hpp>#include <boost/asio/detail/timer_queue_base.hpp>#include <boost/asio/detail/wait_op.hpp>#include <boost/asio/error.hpp>#include <boost/asio/detail/push_options.hpp>namespace boost {namespace asio {namespace detail {template <typename Time_Traits>class timer_queue  : public timer_queue_base{public:  // The time type.  typedef typename Time_Traits::time_type time_type;  // The duration type.  typedef typename Time_Traits::duration_type duration_type;  // Per-timer data.  class per_timer_data  {  public:    per_timer_data() :      heap_index_((std::numeric_limits<std::size_t>::max)()),      next_(0), prev_(0)    {    }  private:    friend class timer_queue;    // The operations waiting on the timer.    op_queue<wait_op> op_queue_;    // The index of the timer in the heap.    std::size_t heap_index_;    // Pointers to adjacent timers in a linked list.    per_timer_data* next_;    per_timer_data* prev_;  };  // Constructor.  timer_queue()    : timers_(),      heap_()  {  }  // Add a new timer to the queue. Returns true if this is the timer that is  // earliest in the queue, in which case the reactor's event demultiplexing  // function call may need to be interrupted and restarted.  bool enqueue_timer(const time_type& time, per_timer_data& timer, wait_op* op)  {    // Enqueue the timer object.    if (timer.prev_ == 0 && &timer != timers_)    {      if (this->is_positive_infinity(time))      {        // No heap entry is required for timers that never expire.        timer.heap_index_ = (std::numeric_limits<std::size_t>::max)();      }      else      {        // Put the new timer at the correct position in the heap. This is done        // first since push_back() can throw due to allocation failure.        timer.heap_index_ = heap_.size();        heap_entry entry = { time, &timer };        heap_.push_back(entry);        up_heap(heap_.size() - 1);      }      // Insert the new timer into the linked list of active timers.      timer.next_ = timers_;      timer.prev_ = 0;      if (timers_)        timers_->prev_ = &timer;      timers_ = &timer;    }    // Enqueue the individual timer operation.    timer.op_queue_.push(op);    // Interrupt reactor only if newly added timer is first to expire.    return timer.heap_index_ == 0 && timer.op_queue_.front() == op;  }  // Whether there are no timers in the queue.  virtual bool empty() const  {    return timers_ == 0;  }  // Get the time for the timer that is earliest in the queue.  virtual long wait_duration_msec(long max_duration) const  {    if (heap_.empty())      return max_duration;    return this->to_msec(        Time_Traits::to_posix_duration(          Time_Traits::subtract(heap_[0].time_, Time_Traits::now())),        max_duration);  }  // Get the time for the timer that is earliest in the queue.  virtual long wait_duration_usec(long max_duration) const  {    if (heap_.empty())      return max_duration;    return this->to_usec(        Time_Traits::to_posix_duration(          Time_Traits::subtract(heap_[0].time_, Time_Traits::now())),        max_duration);  }  // Dequeue all timers not later than the current time.  virtual void get_ready_timers(op_queue<operation>& ops)  {    if (!heap_.empty())    {      const time_type now = Time_Traits::now();      while (!heap_.empty() && !Time_Traits::less_than(now, heap_[0].time_))      {        per_timer_data* timer = heap_[0].timer_;        ops.push(timer->op_queue_);        remove_timer(*timer);      }    }  }  // Dequeue all timers.  virtual void get_all_timers(op_queue<operation>& ops)  {    while (timers_)    {      per_timer_data* timer = timers_;      timers_ = timers_->next_;      ops.push(timer->op_queue_);      timer->next_ = 0;      timer->prev_ = 0;    }    heap_.clear();  }  // Cancel and dequeue operations for the given timer.  std::size_t cancel_timer(per_timer_data& timer, op_queue<operation>& ops,      std::size_t max_cancelled = (std::numeric_limits<std::size_t>::max)())  {    std::size_t num_cancelled = 0;    if (timer.prev_ != 0 || &timer == timers_)    {      while (wait_op* op = (num_cancelled != max_cancelled)          ? timer.op_queue_.front() : 0)      {        op->ec_ = boost::asio::error::operation_aborted;        timer.op_queue_.pop();        ops.push(op);        ++num_cancelled;      }      if (timer.op_queue_.empty())        remove_timer(timer);    }    return num_cancelled;  }  // Move operations from one timer to another, empty timer.  void move_timer(per_timer_data& target, per_timer_data& source)  {    target.op_queue_.push(source.op_queue_);    target.heap_index_ = source.heap_index_;    source.heap_index_ = (std::numeric_limits<std::size_t>::max)();    if (target.heap_index_ < heap_.size())      heap_[target.heap_index_].timer_ = ⌖    if (timers_ == &source)      timers_ = ⌖    if (source.prev_)      source.prev_->next_ = ⌖    if (source.next_)      source.next_->prev_= ⌖    target.next_ = source.next_;    target.prev_ = source.prev_;    source.next_ = 0;    source.prev_ = 0;  }private:  // Move the item at the given index up the heap to its correct position.  void up_heap(std::size_t index)  {    while (index > 0)    {      std::size_t parent = (index - 1) / 2;      if (!Time_Traits::less_than(heap_[index].time_, heap_[parent].time_))        break;      swap_heap(index, parent);      index = parent;    }  }  // Move the item at the given index down the heap to its correct position.  void down_heap(std::size_t index)  {    std::size_t child = index * 2 + 1;    while (child < heap_.size())    {      std::size_t min_child = (child + 1 == heap_.size()          || Time_Traits::less_than(            heap_[child].time_, heap_[child + 1].time_))        ? child : child + 1;      if (Time_Traits::less_than(heap_[index].time_, heap_[min_child].time_))        break;      swap_heap(index, min_child);      index = min_child;      child = index * 2 + 1;    }  }  // Swap two entries in the heap.  void swap_heap(std::size_t index1, std::size_t index2)  {    heap_entry tmp = heap_[index1];    heap_[index1] = heap_[index2];    heap_[index2] = tmp;    heap_[index1].timer_->heap_index_ = index1;    heap_[index2].timer_->heap_index_ = index2;  }  // Remove a timer from the heap and list of timers.  void remove_timer(per_timer_data& timer)  {    // Remove the timer from the heap.    std::size_t index = timer.heap_index_;    if (!heap_.empty() && index < heap_.size())    {      if (index == heap_.size() - 1)      {        timer.heap_index_ = (std::numeric_limits<std::size_t>::max)();        heap_.pop_back();      }      else      {        swap_heap(index, heap_.size() - 1);        timer.heap_index_ = (std::numeric_limits<std::size_t>::max)();        heap_.pop_back();        if (index > 0 && Time_Traits::less_than(              heap_[index].time_, heap_[(index - 1) / 2].time_))          up_heap(index);        else          down_heap(index);      }    }    // Remove the timer from the linked list of active timers.    if (timers_ == &timer)      timers_ = timer.next_;    if (timer.prev_)      timer.prev_->next_ = timer.next_;    if (timer.next_)      timer.next_->prev_= timer.prev_;    timer.next_ = 0;    timer.prev_ = 0;  }  // Determine if the specified absolute time is positive infinity.  template <typename Time_Type>  static bool is_positive_infinity(const Time_Type&)  {    return false;  }  // Determine if the specified absolute time is positive infinity.  template <typename T, typename TimeSystem>  static bool is_positive_infinity(      const boost::date_time::base_time<T, TimeSystem>& time)  {    return time.is_pos_infinity();  }  // Helper function to convert a duration into milliseconds.  template <typename Duration>  long to_msec(const Duration& d, long max_duration) const  {    if (d.ticks() <= 0)      return 0;    int64_t msec = d.total_milliseconds();    if (msec == 0)      return 1;    if (msec > max_duration)      return max_duration;    return static_cast<long>(msec);  }  // Helper function to convert a duration into microseconds.  template <typename Duration>  long to_usec(const Duration& d, long max_duration) const  {    if (d.ticks() <= 0)      return 0;    int64_t usec = d.total_microseconds();    if (usec == 0)      return 1;    if (usec > max_duration)      return max_duration;    return static_cast<long>(usec);  }  // The head of a linked list of all active timers.  per_timer_data* timers_;  struct heap_entry  {    // The time when the timer should fire.    time_type time_;    // The associated timer with enqueued operations.    per_timer_data* timer_;  };  // The heap of timers, with the earliest timer at the front.  std::vector<heap_entry> heap_;};} // namespace detail} // namespace asio} // namespace boost#include <boost/asio/detail/pop_options.hpp>#endif // BOOST_ASIO_DETAIL_TIMER_QUEUE_HPP
 |