| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 | //=======================================================================// Copyright 2000 University of Notre Dame.// Authors: Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee//// Distributed under the Boost Software License, Version 1.0. (See// accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)//=======================================================================#ifndef BOOST_EDGE_CONNECTIVITY#define BOOST_EDGE_CONNECTIVITY// WARNING: not-yet fully tested!#include <boost/config.hpp>#include <vector>#include <set>#include <algorithm>#include <boost/graph/edmonds_karp_max_flow.hpp>namespace boost{namespace detail{    template < class Graph >    inline std::pair< typename graph_traits< Graph >::vertex_descriptor,        typename graph_traits< Graph >::degree_size_type >    min_degree_vertex(Graph& g)    {        typedef graph_traits< Graph > Traits;        typename Traits::vertex_descriptor p;        typedef typename Traits::degree_size_type size_type;        size_type delta = (std::numeric_limits< size_type >::max)();        typename Traits::vertex_iterator i, iend;        for (boost::tie(i, iend) = vertices(g); i != iend; ++i)            if (degree(*i, g) < delta)            {                delta = degree(*i, g);                p = *i;            }        return std::make_pair(p, delta);    }    template < class Graph, class OutputIterator >    void neighbors(const Graph& g,        typename graph_traits< Graph >::vertex_descriptor u,        OutputIterator result)    {        typename graph_traits< Graph >::adjacency_iterator ai, aend;        for (boost::tie(ai, aend) = adjacent_vertices(u, g); ai != aend; ++ai)            *result++ = *ai;    }    template < class Graph, class VertexIterator, class OutputIterator >    void neighbors(const Graph& g, VertexIterator first, VertexIterator last,        OutputIterator result)    {        for (; first != last; ++first)            neighbors(g, *first, result);    }} // namespace detail// O(m n)template < class VertexListGraph, class OutputIterator >typename graph_traits< VertexListGraph >::degree_size_type edge_connectivity(    VertexListGraph& g, OutputIterator disconnecting_set){    //-------------------------------------------------------------------------    // Type Definitions    typedef graph_traits< VertexListGraph > Traits;    typedef typename Traits::vertex_iterator vertex_iterator;    typedef typename Traits::edge_iterator edge_iterator;    typedef typename Traits::out_edge_iterator out_edge_iterator;    typedef typename Traits::vertex_descriptor vertex_descriptor;    typedef typename Traits::degree_size_type degree_size_type;    typedef color_traits< default_color_type > Color;    typedef adjacency_list_traits< vecS, vecS, directedS > Tr;    typedef typename Tr::edge_descriptor Tr_edge_desc;    typedef adjacency_list< vecS, vecS, directedS, no_property,        property< edge_capacity_t, degree_size_type,            property< edge_residual_capacity_t, degree_size_type,                property< edge_reverse_t, Tr_edge_desc > > > >        FlowGraph;    typedef typename graph_traits< FlowGraph >::edge_descriptor edge_descriptor;    //-------------------------------------------------------------------------    // Variable Declarations    vertex_descriptor u, v, p, k;    edge_descriptor e1, e2;    bool inserted;    vertex_iterator vi, vi_end;    edge_iterator ei, ei_end;    degree_size_type delta, alpha_star, alpha_S_k;    std::set< vertex_descriptor > S, neighbor_S;    std::vector< vertex_descriptor > S_star, non_neighbor_S;    std::vector< default_color_type > color(num_vertices(g));    std::vector< edge_descriptor > pred(num_vertices(g));    //-------------------------------------------------------------------------    // Create a network flow graph out of the undirected graph    FlowGraph flow_g(num_vertices(g));    typename property_map< FlowGraph, edge_capacity_t >::type cap        = get(edge_capacity, flow_g);    typename property_map< FlowGraph, edge_residual_capacity_t >::type res_cap        = get(edge_residual_capacity, flow_g);    typename property_map< FlowGraph, edge_reverse_t >::type rev_edge        = get(edge_reverse, flow_g);    for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)    {        u = source(*ei, g), v = target(*ei, g);        boost::tie(e1, inserted) = add_edge(u, v, flow_g);        cap[e1] = 1;        boost::tie(e2, inserted) = add_edge(v, u, flow_g);        cap[e2] = 1; // not sure about this        rev_edge[e1] = e2;        rev_edge[e2] = e1;    }    //-------------------------------------------------------------------------    // The Algorithm    boost::tie(p, delta) = detail::min_degree_vertex(g);    S_star.push_back(p);    alpha_star = delta;    S.insert(p);    neighbor_S.insert(p);    detail::neighbors(        g, S.begin(), S.end(), std::inserter(neighbor_S, neighbor_S.begin()));    boost::tie(vi, vi_end) = vertices(g);    std::set_difference(vi, vi_end, neighbor_S.begin(), neighbor_S.end(),        std::back_inserter(non_neighbor_S));    while (!non_neighbor_S.empty())    { // at most n - 1 times        k = non_neighbor_S.front();        alpha_S_k = edmonds_karp_max_flow(            flow_g, p, k, cap, res_cap, rev_edge, &color[0], &pred[0]);        if (alpha_S_k < alpha_star)        {            alpha_star = alpha_S_k;            S_star.clear();            for (boost::tie(vi, vi_end) = vertices(flow_g); vi != vi_end; ++vi)                if (color[*vi] != Color::white())                    S_star.push_back(*vi);        }        S.insert(k);        neighbor_S.insert(k);        detail::neighbors(g, k, std::inserter(neighbor_S, neighbor_S.begin()));        non_neighbor_S.clear();        boost::tie(vi, vi_end) = vertices(g);        std::set_difference(vi, vi_end, neighbor_S.begin(), neighbor_S.end(),            std::back_inserter(non_neighbor_S));    }    //-------------------------------------------------------------------------    // Compute edges of the cut [S*, ~S*]    std::vector< bool > in_S_star(num_vertices(g), false);    typename std::vector< vertex_descriptor >::iterator si;    for (si = S_star.begin(); si != S_star.end(); ++si)        in_S_star[*si] = true;    degree_size_type c = 0;    for (si = S_star.begin(); si != S_star.end(); ++si)    {        out_edge_iterator ei, ei_end;        for (boost::tie(ei, ei_end) = out_edges(*si, g); ei != ei_end; ++ei)            if (!in_S_star[target(*ei, g)])            {                *disconnecting_set++ = *ei;                ++c;            }    }    return c;}} // namespace boost#endif // BOOST_EDGE_CONNECTIVITY
 |