| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 | //  Copyright John Maddock 2006.//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_STATS_EXTREME_VALUE_HPP#define BOOST_STATS_EXTREME_VALUE_HPP#include <boost/math/distributions/fwd.hpp>#include <boost/math/constants/constants.hpp>#include <boost/math/special_functions/log1p.hpp>#include <boost/math/special_functions/expm1.hpp>#include <boost/math/distributions/complement.hpp>#include <boost/math/distributions/detail/common_error_handling.hpp>#include <boost/config/no_tr1/cmath.hpp>//// This is the maximum extreme value distribution, see// http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm// and http://mathworld.wolfram.com/ExtremeValueDistribution.html// Also known as a Fisher-Tippett distribution, a log-Weibull// distribution or a Gumbel distribution.#include <utility>#ifdef BOOST_MSVC# pragma warning(push)# pragma warning(disable: 4702) // unreachable code (return after domain_error throw).#endifnamespace boost{ namespace math{namespace detail{//// Error check://template <class RealType, class Policy>inline bool verify_scale_b(const char* function, RealType b, RealType* presult, const Policy& pol){   if((b <= 0) || !(boost::math::isfinite)(b))   {      *presult = policies::raise_domain_error<RealType>(         function,         "The scale parameter \"b\" must be finite and > 0, but was: %1%.", b, pol);      return false;   }   return true;}} // namespace detailtemplate <class RealType = double, class Policy = policies::policy<> >class extreme_value_distribution{public:   typedef RealType value_type;   typedef Policy policy_type;   extreme_value_distribution(RealType a = 0, RealType b = 1)      : m_a(a), m_b(b)   {      RealType err;      detail::verify_scale_b("boost::math::extreme_value_distribution<%1%>::extreme_value_distribution", b, &err, Policy());      detail::check_finite("boost::math::extreme_value_distribution<%1%>::extreme_value_distribution", a, &err, Policy());   } // extreme_value_distribution   RealType location()const { return m_a; }   RealType scale()const { return m_b; }private:   RealType m_a, m_b;};typedef extreme_value_distribution<double> extreme_value;template <class RealType, class Policy>inline const std::pair<RealType, RealType> range(const extreme_value_distribution<RealType, Policy>& /*dist*/){ // Range of permissible values for random variable x.   using boost::math::tools::max_value;   return std::pair<RealType, RealType>(      std::numeric_limits<RealType>::has_infinity ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>(),       std::numeric_limits<RealType>::has_infinity ? std::numeric_limits<RealType>::infinity() : max_value<RealType>());}template <class RealType, class Policy>inline const std::pair<RealType, RealType> support(const extreme_value_distribution<RealType, Policy>& /*dist*/){ // Range of supported values for random variable x.   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.   using boost::math::tools::max_value;   return std::pair<RealType, RealType>(-max_value<RealType>(),  max_value<RealType>());}template <class RealType, class Policy>inline RealType pdf(const extreme_value_distribution<RealType, Policy>& dist, const RealType& x){   BOOST_MATH_STD_USING // for ADL of std functions   static const char* function = "boost::math::pdf(const extreme_value_distribution<%1%>&, %1%)";   RealType a = dist.location();   RealType b = dist.scale();   RealType result = 0;   if(0 == detail::verify_scale_b(function, b, &result, Policy()))      return result;   if(0 == detail::check_finite(function, a, &result, Policy()))      return result;   if((boost::math::isinf)(x))      return 0.0f;   if(0 == detail::check_x(function, x, &result, Policy()))      return result;   RealType e = (a - x) / b;   if(e < tools::log_max_value<RealType>())      result = exp(e) * exp(-exp(e)) / b;   // else.... result *must* be zero since exp(e) is infinite...   return result;} // pdftemplate <class RealType, class Policy>inline RealType cdf(const extreme_value_distribution<RealType, Policy>& dist, const RealType& x){   BOOST_MATH_STD_USING // for ADL of std functions   static const char* function = "boost::math::cdf(const extreme_value_distribution<%1%>&, %1%)";   if((boost::math::isinf)(x))      return x < 0 ? 0.0f : 1.0f;   RealType a = dist.location();   RealType b = dist.scale();   RealType result = 0;   if(0 == detail::verify_scale_b(function, b, &result, Policy()))      return result;   if(0 == detail::check_finite(function, a, &result, Policy()))      return result;   if(0 == detail::check_finite(function, a, &result, Policy()))      return result;   if(0 == detail::check_x("boost::math::cdf(const extreme_value_distribution<%1%>&, %1%)", x, &result, Policy()))      return result;   result = exp(-exp((a-x)/b));   return result;} // cdftemplate <class RealType, class Policy>RealType quantile(const extreme_value_distribution<RealType, Policy>& dist, const RealType& p){   BOOST_MATH_STD_USING // for ADL of std functions   static const char* function = "boost::math::quantile(const extreme_value_distribution<%1%>&, %1%)";   RealType a = dist.location();   RealType b = dist.scale();   RealType result = 0;   if(0 == detail::verify_scale_b(function, b, &result, Policy()))      return result;   if(0 == detail::check_finite(function, a, &result, Policy()))      return result;   if(0 == detail::check_probability(function, p, &result, Policy()))      return result;   if(p == 0)      return -policies::raise_overflow_error<RealType>(function, 0, Policy());   if(p == 1)      return policies::raise_overflow_error<RealType>(function, 0, Policy());   result = a - log(-log(p)) * b;   return result;} // quantiletemplate <class RealType, class Policy>inline RealType cdf(const complemented2_type<extreme_value_distribution<RealType, Policy>, RealType>& c){   BOOST_MATH_STD_USING // for ADL of std functions   static const char* function = "boost::math::cdf(const extreme_value_distribution<%1%>&, %1%)";   if((boost::math::isinf)(c.param))      return c.param < 0 ? 1.0f : 0.0f;   RealType a = c.dist.location();   RealType b = c.dist.scale();   RealType result = 0;   if(0 == detail::verify_scale_b(function, b, &result, Policy()))      return result;   if(0 == detail::check_finite(function, a, &result, Policy()))      return result;   if(0 == detail::check_x(function, c.param, &result, Policy()))      return result;   result = -boost::math::expm1(-exp((a-c.param)/b), Policy());   return result;}template <class RealType, class Policy>RealType quantile(const complemented2_type<extreme_value_distribution<RealType, Policy>, RealType>& c){   BOOST_MATH_STD_USING // for ADL of std functions   static const char* function = "boost::math::quantile(const extreme_value_distribution<%1%>&, %1%)";   RealType a = c.dist.location();   RealType b = c.dist.scale();   RealType q = c.param;   RealType result = 0;   if(0 == detail::verify_scale_b(function, b, &result, Policy()))      return result;   if(0 == detail::check_finite(function, a, &result, Policy()))      return result;   if(0 == detail::check_probability(function, q, &result, Policy()))      return result;   if(q == 0)      return policies::raise_overflow_error<RealType>(function, 0, Policy());   if(q == 1)      return -policies::raise_overflow_error<RealType>(function, 0, Policy());   result = a - log(-boost::math::log1p(-q, Policy())) * b;   return result;}template <class RealType, class Policy>inline RealType mean(const extreme_value_distribution<RealType, Policy>& dist){   RealType a = dist.location();   RealType b = dist.scale();   RealType result = 0;   if(0 == detail::verify_scale_b("boost::math::mean(const extreme_value_distribution<%1%>&)", b, &result, Policy()))      return result;   if (0 == detail::check_finite("boost::math::mean(const extreme_value_distribution<%1%>&)", a, &result, Policy()))      return result;   return a + constants::euler<RealType>() * b;}template <class RealType, class Policy>inline RealType standard_deviation(const extreme_value_distribution<RealType, Policy>& dist){   BOOST_MATH_STD_USING // for ADL of std functions.   RealType b = dist.scale();   RealType result = 0;   if(0 == detail::verify_scale_b("boost::math::standard_deviation(const extreme_value_distribution<%1%>&)", b, &result, Policy()))      return result;   if(0 == detail::check_finite("boost::math::standard_deviation(const extreme_value_distribution<%1%>&)", dist.location(), &result, Policy()))      return result;   return constants::pi<RealType>() * b / sqrt(static_cast<RealType>(6));}template <class RealType, class Policy>inline RealType mode(const extreme_value_distribution<RealType, Policy>& dist){   return dist.location();}template <class RealType, class Policy>inline RealType median(const extreme_value_distribution<RealType, Policy>& dist){  using constants::ln_ln_two;   return dist.location() - dist.scale() * ln_ln_two<RealType>();}template <class RealType, class Policy>inline RealType skewness(const extreme_value_distribution<RealType, Policy>& /*dist*/){   //   // This is 12 * sqrt(6) * zeta(3) / pi^3:   // See http://mathworld.wolfram.com/ExtremeValueDistribution.html   //   return static_cast<RealType>(1.1395470994046486574927930193898461120875997958366L);}template <class RealType, class Policy>inline RealType kurtosis(const extreme_value_distribution<RealType, Policy>& /*dist*/){   // See http://mathworld.wolfram.com/ExtremeValueDistribution.html   return RealType(27) / 5;}template <class RealType, class Policy>inline RealType kurtosis_excess(const extreme_value_distribution<RealType, Policy>& /*dist*/){   // See http://mathworld.wolfram.com/ExtremeValueDistribution.html   return RealType(12) / 5;}} // namespace math} // namespace boost#ifdef BOOST_MSVC# pragma warning(pop)#endif// This include must be at the end, *after* the accessors// for this distribution have been defined, in order to// keep compilers that support two-phase lookup happy.#include <boost/math/distributions/detail/derived_accessors.hpp>#endif // BOOST_STATS_EXTREME_VALUE_HPP
 |