| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 | ///////////////////////////////////////////////////////////////////////////////// kurtosis.hpp////  Copyright 2006 Olivier Gygi, Daniel Egloff. Distributed under the Boost//  Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_ACCUMULATORS_STATISTICS_KURTOSIS_HPP_EAN_28_10_2005#define BOOST_ACCUMULATORS_STATISTICS_KURTOSIS_HPP_EAN_28_10_2005#include <limits>#include <boost/mpl/placeholders.hpp>#include <boost/accumulators/framework/accumulator_base.hpp>#include <boost/accumulators/framework/extractor.hpp>#include <boost/accumulators/framework/parameters/sample.hpp>#include <boost/accumulators/numeric/functional.hpp>#include <boost/accumulators/framework/depends_on.hpp>#include <boost/accumulators/statistics/mean.hpp>#include <boost/accumulators/statistics/moment.hpp>namespace boost { namespace accumulators{namespace impl{    ///////////////////////////////////////////////////////////////////////////////    // kurtosis_impl    /**        @brief Kurtosis estimation        The kurtosis of a sample distribution is defined as the ratio of the 4th central moment and the square of the 2nd central        moment (the variance) of the samples, minus 3. The term \f$ -3 \f$ is added in order to ensure that the normal distribution        has zero kurtosis. The kurtosis can also be expressed by the simple moments:        \f[            \hat{g}_2 =                \frac                {\widehat{m}_n^{(4)}-4\widehat{m}_n^{(3)}\hat{\mu}_n+6\widehat{m}_n^{(2)}\hat{\mu}_n^2-3\hat{\mu}_n^4}                {\left(\widehat{m}_n^{(2)} - \hat{\mu}_n^{2}\right)^2} - 3,        \f]        where \f$ \widehat{m}_n^{(i)} \f$ are the \f$ i \f$-th moment and \f$ \hat{\mu}_n \f$ the mean (first moment) of the        \f$ n \f$ samples.    */    template<typename Sample>    struct kurtosis_impl      : accumulator_base    {        // for boost::result_of        typedef typename numeric::functional::fdiv<Sample, Sample>::result_type result_type;        kurtosis_impl(dont_care) {}        template<typename Args>        result_type result(Args const &args) const        {            return numeric::fdiv(                        accumulators::moment<4>(args)                        - 4. * accumulators::moment<3>(args) * mean(args)                        + 6. * accumulators::moment<2>(args) * mean(args) * mean(args)                        - 3. * mean(args) * mean(args) * mean(args) * mean(args)                      , ( accumulators::moment<2>(args) - mean(args) * mean(args) )                        * ( accumulators::moment<2>(args) - mean(args) * mean(args) )                    ) - 3.;        }                // serialization is done by accumulators it depends on        template<class Archive>        void serialize(Archive & ar, const unsigned int file_version) {}    };} // namespace impl///////////////////////////////////////////////////////////////////////////////// tag::kurtosis//namespace tag{    struct kurtosis      : depends_on<mean, moment<2>, moment<3>, moment<4> >    {        /// INTERNAL ONLY        ///        typedef accumulators::impl::kurtosis_impl<mpl::_1> impl;    };}///////////////////////////////////////////////////////////////////////////////// extract::kurtosis//namespace extract{    extractor<tag::kurtosis> const kurtosis = {};    BOOST_ACCUMULATORS_IGNORE_GLOBAL(kurtosis)}using extract::kurtosis;// So that kurtosis can be automatically substituted with// weighted_kurtosis when the weight parameter is non-voidtemplate<>struct as_weighted_feature<tag::kurtosis>{    typedef tag::weighted_kurtosis type;};template<>struct feature_of<tag::weighted_kurtosis>  : feature_of<tag::kurtosis>{};}} // namespace boost::accumulators#endif
 |