| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384 | // Copyright (C) 2001 Vladimir Prus <ghost@cs.msu.su>// Copyright (C) 2001 Jeremy Siek <jsiek@cs.indiana.edu>// Distributed under the Boost Software License, Version 1.0. (See// accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)// NOTE: this final is generated by libs/graph/doc/transitive_closure.w#ifndef BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP#define BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP#include <vector>#include <algorithm> // for std::min and std::max#include <functional>#include <boost/config.hpp>#include <boost/bind.hpp>#include <boost/graph/strong_components.hpp>#include <boost/graph/topological_sort.hpp>#include <boost/graph/graph_concepts.hpp>#include <boost/graph/named_function_params.hpp>#include <boost/graph/adjacency_list.hpp>#include <boost/concept/assert.hpp>namespace boost{namespace detail{    inline void union_successor_sets(const std::vector< std::size_t >& s1,        const std::vector< std::size_t >& s2, std::vector< std::size_t >& s3)    {        BOOST_USING_STD_MIN();        for (std::size_t k = 0; k < s1.size(); ++k)            s3[k] = min BOOST_PREVENT_MACRO_SUBSTITUTION(s1[k], s2[k]);    }} // namespace detailnamespace detail{    template < typename TheContainer, typename ST = std::size_t,        typename VT = typename TheContainer::value_type >    struct subscript_t    {        typedef ST argument_type;        typedef VT& result_type;        subscript_t(TheContainer& c) : container(&c) {}        VT& operator()(const ST& i) const { return (*container)[i]; }    protected:        TheContainer* container;    };    template < typename TheContainer >    subscript_t< TheContainer > subscript(TheContainer& c)    {        return subscript_t< TheContainer >(c);    }} // namespace detailtemplate < typename Graph, typename GraphTC, typename G_to_TC_VertexMap,    typename VertexIndexMap >void transitive_closure(const Graph& g, GraphTC& tc,    G_to_TC_VertexMap g_to_tc_map, VertexIndexMap index_map){    if (num_vertices(g) == 0)        return;    typedef typename graph_traits< Graph >::vertex_descriptor vertex;    typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator;    typedef typename property_traits< VertexIndexMap >::value_type size_type;    typedef        typename graph_traits< Graph >::adjacency_iterator adjacency_iterator;    BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph >));    BOOST_CONCEPT_ASSERT((AdjacencyGraphConcept< Graph >));    BOOST_CONCEPT_ASSERT((VertexMutableGraphConcept< GraphTC >));    BOOST_CONCEPT_ASSERT((EdgeMutableGraphConcept< GraphTC >));    BOOST_CONCEPT_ASSERT(        (ReadablePropertyMapConcept< VertexIndexMap, vertex >));    typedef size_type cg_vertex;    std::vector< cg_vertex > component_number_vec(num_vertices(g));    iterator_property_map< cg_vertex*, VertexIndexMap, cg_vertex, cg_vertex& >        component_number(&component_number_vec[0], index_map);    int num_scc        = strong_components(g, component_number, vertex_index_map(index_map));    std::vector< std::vector< vertex > > components;    build_component_lists(g, num_scc, component_number, components);    typedef boost::adjacency_list< boost::vecS, boost::vecS, boost::directedS >        CG_t;    CG_t CG(num_scc);    for (cg_vertex s = 0; s < components.size(); ++s)    {        std::vector< cg_vertex > adj;        for (size_type i = 0; i < components[s].size(); ++i)        {            vertex u = components[s][i];            adjacency_iterator v, v_end;            for (boost::tie(v, v_end) = adjacent_vertices(u, g); v != v_end;                 ++v)            {                cg_vertex t = component_number[*v];                if (s != t) // Avoid loops in the condensation graph                    adj.push_back(t);            }        }        std::sort(adj.begin(), adj.end());        typename std::vector< cg_vertex >::iterator di            = std::unique(adj.begin(), adj.end());        if (di != adj.end())            adj.erase(di, adj.end());        for (typename std::vector< cg_vertex >::const_iterator i = adj.begin();             i != adj.end(); ++i)        {            add_edge(s, *i, CG);        }    }    std::vector< cg_vertex > topo_order;    std::vector< cg_vertex > topo_number(num_vertices(CG));    topological_sort(CG, std::back_inserter(topo_order),        vertex_index_map(identity_property_map()));    std::reverse(topo_order.begin(), topo_order.end());    size_type n = 0;    for (typename std::vector< cg_vertex >::iterator iter = topo_order.begin();         iter != topo_order.end(); ++iter)        topo_number[*iter] = n++;    std::vector< std::vector< cg_vertex > > CG_vec(num_vertices(CG));    for (size_type i = 0; i < num_vertices(CG); ++i)    {        typedef typename boost::graph_traits< CG_t >::adjacency_iterator            cg_adj_iter;        std::pair< cg_adj_iter, cg_adj_iter > pr = adjacent_vertices(i, CG);        CG_vec[i].assign(pr.first, pr.second);        std::sort(CG_vec[i].begin(), CG_vec[i].end(),            boost::bind(std::less< cg_vertex >(),                boost::bind(detail::subscript(topo_number), _1),                boost::bind(detail::subscript(topo_number), _2)));    }    std::vector< std::vector< cg_vertex > > chains;    {        std::vector< cg_vertex > in_a_chain(CG_vec.size());        for (typename std::vector< cg_vertex >::iterator i = topo_order.begin();             i != topo_order.end(); ++i)        {            cg_vertex v = *i;            if (!in_a_chain[v])            {                chains.resize(chains.size() + 1);                std::vector< cg_vertex >& chain = chains.back();                for (;;)                {                    chain.push_back(v);                    in_a_chain[v] = true;                    typename std::vector< cg_vertex >::const_iterator next                        = std::find_if(CG_vec[v].begin(), CG_vec[v].end(),                            std::not1(detail::subscript(in_a_chain)));                    if (next != CG_vec[v].end())                        v = *next;                    else                        break; // end of chain, dead-end                }            }        }    }    std::vector< size_type > chain_number(CG_vec.size());    std::vector< size_type > pos_in_chain(CG_vec.size());    for (size_type i = 0; i < chains.size(); ++i)        for (size_type j = 0; j < chains[i].size(); ++j)        {            cg_vertex v = chains[i][j];            chain_number[v] = i;            pos_in_chain[v] = j;        }    cg_vertex inf = (std::numeric_limits< cg_vertex >::max)();    std::vector< std::vector< cg_vertex > > successors(        CG_vec.size(), std::vector< cg_vertex >(chains.size(), inf));    for (typename std::vector< cg_vertex >::reverse_iterator i         = topo_order.rbegin();         i != topo_order.rend(); ++i)    {        cg_vertex u = *i;        typename std::vector< cg_vertex >::const_iterator adj, adj_last;        for (adj = CG_vec[u].begin(), adj_last = CG_vec[u].end();             adj != adj_last; ++adj)        {            cg_vertex v = *adj;            if (topo_number[v] < successors[u][chain_number[v]])            {                // Succ(u) = Succ(u) U Succ(v)                detail::union_successor_sets(                    successors[u], successors[v], successors[u]);                // Succ(u) = Succ(u) U {v}                successors[u][chain_number[v]] = topo_number[v];            }        }    }    for (size_type i = 0; i < CG_vec.size(); ++i)        CG_vec[i].clear();    for (size_type i = 0; i < CG_vec.size(); ++i)        for (size_type j = 0; j < chains.size(); ++j)        {            size_type topo_num = successors[i][j];            if (topo_num < inf)            {                cg_vertex v = topo_order[topo_num];                for (size_type k = pos_in_chain[v]; k < chains[j].size(); ++k)                    CG_vec[i].push_back(chains[j][k]);            }        }    // Add vertices to the transitive closure graph    {        vertex_iterator i, i_end;        for (boost::tie(i, i_end) = vertices(g); i != i_end; ++i)            g_to_tc_map[*i] = add_vertex(tc);    }    // Add edges between all the vertices in two adjacent SCCs    typename std::vector< std::vector< cg_vertex > >::const_iterator si, si_end;    for (si = CG_vec.begin(), si_end = CG_vec.end(); si != si_end; ++si)    {        cg_vertex s = si - CG_vec.begin();        typename std::vector< cg_vertex >::const_iterator i, i_end;        for (i = CG_vec[s].begin(), i_end = CG_vec[s].end(); i != i_end; ++i)        {            cg_vertex t = *i;            for (size_type k = 0; k < components[s].size(); ++k)                for (size_type l = 0; l < components[t].size(); ++l)                    add_edge(g_to_tc_map[components[s][k]],                        g_to_tc_map[components[t][l]], tc);        }    }    // Add edges connecting all vertices in a SCC    for (size_type i = 0; i < components.size(); ++i)        if (components[i].size() > 1)            for (size_type k = 0; k < components[i].size(); ++k)                for (size_type l = 0; l < components[i].size(); ++l)                {                    vertex u = components[i][k], v = components[i][l];                    add_edge(g_to_tc_map[u], g_to_tc_map[v], tc);                }    // Find loopbacks in the original graph.    // Need to add it to transitive closure.    {        vertex_iterator i, i_end;        for (boost::tie(i, i_end) = vertices(g); i != i_end; ++i)        {            adjacency_iterator ab, ae;            for (boost::tie(ab, ae) = adjacent_vertices(*i, g); ab != ae; ++ab)            {                if (*ab == *i)                    if (components[component_number[*i]].size() == 1)                        add_edge(g_to_tc_map[*i], g_to_tc_map[*i], tc);            }        }    }}template < typename Graph, typename GraphTC >void transitive_closure(const Graph& g, GraphTC& tc){    if (num_vertices(g) == 0)        return;    typedef typename property_map< Graph, vertex_index_t >::const_type        VertexIndexMap;    VertexIndexMap index_map = get(vertex_index, g);    typedef typename graph_traits< GraphTC >::vertex_descriptor tc_vertex;    std::vector< tc_vertex > to_tc_vec(num_vertices(g));    iterator_property_map< tc_vertex*, VertexIndexMap, tc_vertex, tc_vertex& >        g_to_tc_map(&to_tc_vec[0], index_map);    transitive_closure(g, tc, g_to_tc_map, index_map);}namespace detail{    template < typename Graph, typename GraphTC, typename G_to_TC_VertexMap,        typename VertexIndexMap >    void transitive_closure_dispatch(const Graph& g, GraphTC& tc,        G_to_TC_VertexMap g_to_tc_map, VertexIndexMap index_map)    {        typedef typename graph_traits< GraphTC >::vertex_descriptor tc_vertex;        typename std::vector< tc_vertex >::size_type n            = is_default_param(g_to_tc_map) ? num_vertices(g) : 1;        std::vector< tc_vertex > to_tc_vec(n);        transitive_closure(g, tc,            choose_param(g_to_tc_map,                make_iterator_property_map(                    to_tc_vec.begin(), index_map, to_tc_vec[0])),            index_map);    }} // namespace detailtemplate < typename Graph, typename GraphTC, typename P, typename T,    typename R >void transitive_closure(    const Graph& g, GraphTC& tc, const bgl_named_params< P, T, R >& params){    if (num_vertices(g) == 0)        return;    detail::transitive_closure_dispatch(g, tc,        get_param(params, orig_to_copy_t()),        choose_const_pmap(get_param(params, vertex_index), g, vertex_index));}template < typename G > void warshall_transitive_closure(G& g){    typedef typename graph_traits< G >::vertex_iterator vertex_iterator;    BOOST_CONCEPT_ASSERT((AdjacencyMatrixConcept< G >));    BOOST_CONCEPT_ASSERT((EdgeMutableGraphConcept< G >));    // Matrix form:    // for k    //  for i    //    if A[i,k]    //      for j    //        A[i,j] = A[i,j] | A[k,j]    vertex_iterator ki, ke, ii, ie, ji, je;    for (boost::tie(ki, ke) = vertices(g); ki != ke; ++ki)        for (boost::tie(ii, ie) = vertices(g); ii != ie; ++ii)            if (edge(*ii, *ki, g).second)                for (boost::tie(ji, je) = vertices(g); ji != je; ++ji)                    if (!edge(*ii, *ji, g).second && edge(*ki, *ji, g).second)                    {                        add_edge(*ii, *ji, g);                    }}template < typename G > void warren_transitive_closure(G& g){    using namespace boost;    typedef typename graph_traits< G >::vertex_iterator vertex_iterator;    BOOST_CONCEPT_ASSERT((AdjacencyMatrixConcept< G >));    BOOST_CONCEPT_ASSERT((EdgeMutableGraphConcept< G >));    // Make sure second loop will work    if (num_vertices(g) == 0)        return;    // for i = 2 to n    //    for k = 1 to i - 1    //      if A[i,k]    //        for j = 1 to n    //          A[i,j] = A[i,j] | A[k,j]    vertex_iterator ic, ie, jc, je, kc, ke;    for (boost::tie(ic, ie) = vertices(g), ++ic; ic != ie; ++ic)        for (boost::tie(kc, ke) = vertices(g); *kc != *ic; ++kc)            if (edge(*ic, *kc, g).second)                for (boost::tie(jc, je) = vertices(g); jc != je; ++jc)                    if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second)                    {                        add_edge(*ic, *jc, g);                    }    //  for i = 1 to n - 1    //    for k = i + 1 to n    //      if A[i,k]    //        for j = 1 to n    //          A[i,j] = A[i,j] | A[k,j]    for (boost::tie(ic, ie) = vertices(g), --ie; ic != ie; ++ic)        for (kc = ic, ke = ie, ++kc; kc != ke; ++kc)            if (edge(*ic, *kc, g).second)                for (boost::tie(jc, je) = vertices(g); jc != je; ++jc)                    if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second)                    {                        add_edge(*ic, *jc, g);                    }}} // namespace boost#endif // BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP
 |