| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 | ////////////////////////////////////////////////////////////////////////////////// \file make.hpp/// Contains definition of the make<> transform.////  Copyright 2008 Eric Niebler. Distributed under the Boost//  Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_PROTO_TRANSFORM_MAKE_HPP_EAN_12_02_2007#define BOOST_PROTO_TRANSFORM_MAKE_HPP_EAN_12_02_2007#include <boost/detail/workaround.hpp>#include <boost/preprocessor/repetition/enum.hpp>#include <boost/preprocessor/repetition/enum_params.hpp>#include <boost/preprocessor/repetition/enum_trailing_params.hpp>#include <boost/preprocessor/repetition/enum_binary_params.hpp>#include <boost/preprocessor/repetition/enum_params_with_a_default.hpp>#include <boost/preprocessor/repetition/repeat_from_to.hpp>#include <boost/preprocessor/facilities/intercept.hpp>#include <boost/preprocessor/cat.hpp>#include <boost/preprocessor/iteration/iterate.hpp>#include <boost/preprocessor/selection/max.hpp>#include <boost/preprocessor/arithmetic/inc.hpp>#include <boost/mpl/and.hpp>#include <boost/mpl/aux_/has_type.hpp>#include <boost/proto/detail/template_arity.hpp>#include <boost/utility/result_of.hpp>#include <boost/proto/proto_fwd.hpp>#include <boost/proto/traits.hpp>#include <boost/proto/args.hpp>#include <boost/proto/transform/impl.hpp>#include <boost/proto/transform/detail/pack.hpp>#include <boost/proto/detail/as_lvalue.hpp>#include <boost/proto/detail/ignore_unused.hpp>#if defined(_MSC_VER)# pragma warning(push)# pragma warning(disable : 4714) // function 'xxx' marked as __forceinline not inlined#endifnamespace boost { namespace proto{    namespace detail    {        template<typename T>        struct is_applyable          : mpl::and_<is_callable<T>, is_transform<T> >        {};        template<typename T, bool HasType = mpl::aux::has_type<T>::value>        struct nested_type        {            typedef typename T::type type;        };        template<typename T>        struct nested_type<T, false>        {            typedef T type;        };        template<typename T, bool Applied>        struct nested_type_if        {            typedef T type;            static bool const applied = false;        };        template<typename T>        struct nested_type_if<T, true>          : nested_type<T>        {            static bool const applied = true;        };        template<            typename R          , typename Expr, typename State, typename Data            BOOST_PROTO_TEMPLATE_ARITY_PARAM(long Arity = detail::template_arity<R>::value)        >        struct make_        {            typedef R type;            static bool const applied = false;        };        template<            typename R          , typename Expr, typename State, typename Data          , bool IsApplyable = is_applyable<R>::value        >        struct make_if_          : make_<R, Expr, State, Data>        {};        template<typename R, typename Expr, typename State, typename Data>        struct make_if_<R, Expr, State, Data, true>          : uncvref<typename when<_, R>::template impl<Expr, State, Data>::result_type>        {            static bool const applied = true;        };        #if BOOST_WORKAROUND(__GNUC__, == 3) || (BOOST_WORKAROUND(__GNUC__, == 4) && __GNUC_MINOR__ == 0)        // work around GCC bug        template<typename Tag, typename Args, long N, typename Expr, typename State, typename Data>        struct make_if_<proto::expr<Tag, Args, N>, Expr, State, Data, false>        {            typedef proto::expr<Tag, Args, N> type;            static bool const applied = false;        };        // work around GCC bug        template<typename Tag, typename Args, long N, typename Expr, typename State, typename Data>        struct make_if_<proto::basic_expr<Tag, Args, N>, Expr, State, Data, false>        {            typedef proto::basic_expr<Tag, Args, N> type;            static bool const applied = false;        };        #endif        template<typename Type, bool IsAggregate = detail::is_aggregate_<Type>::value>        struct construct_        {            typedef Type result_type;            BOOST_FORCEINLINE            Type operator ()() const            {                return Type();            }            // Other overloads generated by the preprocessor            #include <boost/proto/transform/detail/construct_funop.hpp>        };        template<typename Type>        struct construct_<Type, true>        {            typedef Type result_type;            BOOST_FORCEINLINE            Type operator ()() const            {                return Type();            }            // Other overloads generated by the preprocessor            #include <boost/proto/transform/detail/construct_pod_funop.hpp>        };    }    /// \brief A PrimitiveTransform which prevents another PrimitiveTransform    /// from being applied in an \c ObjectTransform.    ///    /// When building higher order transforms with <tt>make\<\></tt> or    /// <tt>lazy\<\></tt>, you sometimes would like to build types that    /// are parameterized with Proto transforms. In such lambda-style    /// transforms, Proto will unhelpfully find all nested transforms    /// and apply them, even if you don't want them to be applied. Consider    /// the following transform, which will replace the \c _ in    /// <tt>Bar<_>()</tt> with <tt>proto::terminal\<int\>::type</tt>:    ///    /// \code    /// template<typename T>    /// struct Bar    /// {};    ///     /// struct Foo    ///   : proto::when<_, Bar<_>() >    /// {};    ///     /// proto::terminal<int>::type i = {0};    ///     /// int main()    /// {    ///     Foo()(i);    ///     std::cout << typeid(Foo()(i)).name() << std::endl;    /// }    /// \endcode    ///    /// If you actually wanted to default-construct an object of type    /// <tt>Bar\<_\></tt>, you would have to protect the \c _ to prevent    /// it from being applied. You can use <tt>proto::protect\<\></tt>    /// as follows:    ///    /// \code    /// // OK: replace anything with Bar<_>()    /// struct Foo    ///   : proto::when<_, Bar<protect<_> >() >    /// {};    /// \endcode    template<typename PrimitiveTransform>    struct protect : transform<protect<PrimitiveTransform> >    {        template<typename, typename, typename>        struct impl        {            typedef PrimitiveTransform result_type;        };    };    /// \brief A PrimitiveTransform which computes a type by evaluating any    /// nested transforms and then constructs an object of that type.    ///    /// The <tt>make\<\></tt> transform checks to see if \c Object is a template.    /// If it is, the template type is disassembled to find nested transforms.    /// Proto considers the following types to represent transforms:    ///    /// \li Function types    /// \li Function pointer types    /// \li Types for which <tt>proto::is_callable\< type \>::value</tt> is \c true    ///    /// <tt>boost::result_of\<make\<T\<X0,X1,...\> \>(Expr, State, Data)\>::type</tt>    /// is evaluated as follows. For each \c X in <tt>X0,X1,...</tt>, do:    ///    /// \li If \c X is a template like <tt>U\<Y0,Y1,...\></tt>, then let <tt>X'</tt>    ///     be <tt>boost::result_of\<make\<U\<Y0,Y1,...\> \>(Expr, State, Data)\>::type</tt>    ///     (which evaluates this procedure recursively). Note whether any    ///     substitutions took place during this operation.    /// \li Otherwise, if \c X is a transform, then let <tt>X'</tt> be    ///     <tt>boost::result_of\<when\<_, X\>(Expr, State, Data)\>::type</tt>.    ///     Note that a substitution took place.    /// \li Otherwise, let <tt>X'</tt> be \c X, and note that no substitution    ///     took place.    /// \li If any substitutions took place in any of the above steps and    ///     <tt>T\<X0',X1',...\></tt> has a nested <tt>::type</tt> typedef,    ///     the result type is <tt>T\<X0',X1',...\>::type</tt>.    /// \li Otherwise, the result type is <tt>T\<X0',X1',...\></tt>.    ///    /// Note that <tt>when\<\></tt> is implemented in terms of <tt>call\<\></tt>    /// and <tt>make\<\></tt>, so the above procedure is evaluated recursively.    template<typename Object>    struct make : transform<make<Object> >    {        template<typename Expr, typename State, typename Data>        struct impl : transform_impl<Expr, State, Data>        {            typedef typename detail::make_if_<Object, Expr, State, Data>::type result_type;            /// \return <tt>result_type()</tt>            BOOST_FORCEINLINE            result_type operator ()(                typename impl::expr_param              , typename impl::state_param              , typename impl::data_param            ) const            {                return result_type();            }        };    };    /// INTERNAL ONLY    template<typename Fun>    struct make<detail::msvc_fun_workaround<Fun> >      : make<Fun>    {};    // Other specializations generated by the preprocessor.    #include <boost/proto/transform/detail/make.hpp>    #include <boost/proto/transform/detail/make_gcc_workaround.hpp>    /// INTERNAL ONLY    ///    template<typename Object>    struct is_callable<make<Object> >      : mpl::true_    {};    /// INTERNAL ONLY    ///    template<typename PrimitiveTransform>    struct is_callable<protect<PrimitiveTransform> >      : mpl::true_    {};}}#if defined(_MSC_VER)# pragma warning(pop)#endif#endif
 |