| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367 | /* boost random/faure.hpp header file * * Copyright Justinas Vygintas Daugmaudis 2010-2018 * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) */#ifndef BOOST_RANDOM_FAURE_HPP#define BOOST_RANDOM_FAURE_HPP#include <boost/random/detail/qrng_base.hpp>#include <cmath>#include <vector>#include <algorithm>#include <boost/assert.hpp>namespace boost {namespace random {/** @cond */namespace detail {namespace qrng_tables {// There is no particular reason why 187 first primes were chosen// to be put into this table. The only reason was, perhaps, that// the number of dimensions for Faure generator would be around// the same order of magnitude as the number of dimensions supported// by the Sobol qrng.struct primes{  typedef unsigned short value_type;  BOOST_STATIC_CONSTANT(int, number_of_primes = 187);  // A function that returns lower bound prime for a given n  static value_type lower_bound(std::size_t n)  {    static const value_type prim_a[number_of_primes] = {      2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,      59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113,      127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181,      191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251,      257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317,      331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,      401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463,      467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557,      563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619,      631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701,      709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787,      797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863,      877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953,      967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031,      1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093,      1097, 1103, 1109, 1117 };    qrng_detail::dimension_assert("Faure", n, prim_a[number_of_primes - 1]);    return *std::lower_bound(prim_a, prim_a + number_of_primes, n);  }};} // namespace qrng_tables} // namespace detailnamespace qrng_detail {namespace fr {// Returns the integer part of the logarithm base Base of arg.// In erroneous situations, e.g., integer_log(base, 0) the function// returns 0 and does not report the error. This is the intended// behavior.template <typename T>inline T integer_log(T base, T arg){  T ilog = T();  while (base <= arg)  {    arg /= base; ++ilog;  }  return ilog;}// Perform exponentiation by squaring (potential for code reuse in multiprecision::powm)template <typename T>inline T integer_pow(T base, T e){  T result = static_cast<T>(1);  while (e)  {    if (e & static_cast<T>(1))      result *= base;    e >>= 1;    base *= base;  }  return result;}} // namespace fr// Computes a table of binomial coefficients modulo qs.template<typename RealType, typename SeqSizeT, typename PrimeTable>struct binomial_coefficients{  typedef RealType value_type;  typedef SeqSizeT size_type;  // Binomial values modulo qs_base will never be bigger than qs_base.  // We can choose an appropriate integer type to hold modulo values and  // shave off memory footprint.  typedef typename PrimeTable::value_type packed_uint_t;  // default copy c-tor is fine  explicit binomial_coefficients(std::size_t dimension)  {    resize(dimension);  }  void resize(std::size_t dimension)  {    qs_base = PrimeTable::lower_bound(dimension);    // Throw away previously computed coefficients.    // This will trigger recomputation on next update    coeff.clear();  }  template <typename Iterator>  void update(size_type seq, Iterator first, Iterator last)  {    if (first != last)    {      const size_type ilog = fr::integer_log(static_cast<size_type>(qs_base), seq);      const size_type hisum = ilog + 1;      if (coeff.size() != size_hint(hisum)) {        ytemp.resize(static_cast<std::size_t>(hisum)); // cast safe because log is small        compute_coefficients(hisum);        qs_pow = fr::integer_pow(static_cast<size_type>(qs_base), ilog);      }      *first = compute_recip(seq, ytemp.rbegin());      // Find other components using the Faure method.      ++first;      for ( ; first != last; ++first)      {        *first = RealType();        RealType r = static_cast<RealType>(1);        for (size_type i = 0; i != hisum; ++i)        {          RealType ztemp = ytemp[static_cast<std::size_t>(i)] * upper_element(i, i, hisum);          for (size_type j = i + 1; j != hisum; ++j)            ztemp += ytemp[static_cast<std::size_t>(j)] * upper_element(i, j, hisum);          // Sum ( J <= I <= HISUM ) ( old ytemp(i) * binom(i,j) ) mod QS.          ytemp[static_cast<std::size_t>(i)] = std::fmod(ztemp, static_cast<RealType>(qs_base));          r *= static_cast<RealType>(qs_base);          *first += ytemp[static_cast<std::size_t>(i)] / r;        }      }    }  }private:  inline static size_type size_hint(size_type n)  {    return n * (n + 1) / 2;  }  packed_uint_t& upper_element(size_type i, size_type j, size_type dim)  {    BOOST_ASSERT( i < dim );    BOOST_ASSERT( j < dim );    BOOST_ASSERT( i <= j );    return coeff[static_cast<std::size_t>((i * (2 * dim - i + 1)) / 2 + j - i)];  }  template<typename Iterator>  RealType compute_recip(size_type seq, Iterator out) const  {    // Here we do    //   Sum ( 0 <= J <= HISUM ) YTEMP(J) * QS**J    //   Sum ( 0 <= J <= HISUM ) YTEMP(J) / QS**(J+1)    // in one go    RealType r = RealType();    size_type m, k = qs_pow;    for( ; k != 0; ++out, seq = m, k /= qs_base )    {      m  = seq % k;      RealType v  = static_cast<RealType>((seq - m) / k); // RealType <- size type      r += v;      r /= static_cast<RealType>(qs_base);      *out = v; // saves double dereference    }    return r;  }  void compute_coefficients(const size_type n)  {    // Resize and initialize to zero    coeff.resize(static_cast<std::size_t>(size_hint(n)));    std::fill(coeff.begin(), coeff.end(), packed_uint_t());    // The first row and the diagonal is assigned to 1    upper_element(0, 0, n) = 1;    for (size_type i = 1; i < n; ++i)    {      upper_element(0, i, n) = 1;      upper_element(i, i, n) = 1;    }    // Computes binomial coefficients MOD qs_base    for (size_type i = 1; i < n; ++i)    {      for (size_type j = i + 1; j < n; ++j)      {        upper_element(i, j, n) = ( upper_element(i, j-1, n) +                                   upper_element(i-1, j-1, n) ) % qs_base;      }    }  }private:  packed_uint_t qs_base;  // here we cache precomputed data; note that binomial coefficients have  // to be recomputed iff the integer part of the logarithm of seq changes,  // which happens relatively rarely.  std::vector<packed_uint_t> coeff; // packed upper (!) triangular matrix  std::vector<RealType> ytemp;  size_type qs_pow;};} // namespace qrng_detailtypedef detail::qrng_tables::primes default_faure_prime_table;/** @endcond *///!Instantiations of class template faure_engine model a \quasi_random_number_generator.//!The faure_engine uses the algorithm described in//! \blockquote//!Henri Faure,//!Discrepance de suites associees a un systeme de numeration (en dimension s),//!Acta Arithmetica,//!Volume 41, 1982, pages 337-351.//! \endblockquote////! \blockquote//!Bennett Fox,//!Algorithm 647://!Implementation and Relative Efficiency of Quasirandom//!Sequence Generators,//!ACM Transactions on Mathematical Software,//!Volume 12, Number 4, December 1986, pages 362-376.//! \endblockquote//!//!In the following documentation @c X denotes the concrete class of the template//!faure_engine returning objects of type @c RealType, u and v are the values of @c X.//!//!Some member functions may throw exceptions of type @c std::bad_alloc.template<typename RealType, typename SeqSizeT, typename PrimeTable = default_faure_prime_table>class faure_engine  : public qrng_detail::qrng_base<      faure_engine<RealType, SeqSizeT, PrimeTable>    , qrng_detail::binomial_coefficients<RealType, SeqSizeT, PrimeTable>    , SeqSizeT    >{  typedef faure_engine<RealType, SeqSizeT, PrimeTable> self_t;  typedef qrng_detail::binomial_coefficients<RealType, SeqSizeT, PrimeTable> lattice_t;  typedef qrng_detail::qrng_base<self_t, lattice_t, SeqSizeT> base_t;  friend class qrng_detail::qrng_base<self_t, lattice_t, SeqSizeT>;public:  typedef RealType result_type;  /** @copydoc boost::random::niederreiter_base2_engine::min() */  static BOOST_CONSTEXPR result_type min BOOST_PREVENT_MACRO_SUBSTITUTION ()  { return static_cast<result_type>(0); }  /** @copydoc boost::random::niederreiter_base2_engine::max() */  static BOOST_CONSTEXPR result_type max BOOST_PREVENT_MACRO_SUBSTITUTION ()  { return static_cast<result_type>(1); }  //!Effects: Constructs the `s`-dimensional default Faure quasi-random number generator.  //!  //!Throws: bad_alloc, invalid_argument.  explicit faure_engine(std::size_t s)    : base_t(s) // initialize the binomial table here  {}  /** @copydetails boost::random::niederreiter_base2_engine::seed(UIntType)   * Throws: bad_alloc.   */  void seed(SeqSizeT init = 0)  {    compute_seq(init);    base_t::reset_seq(init);  }#ifdef BOOST_RANDOM_DOXYGEN  //=========================Doxygen needs this!==============================  /** @copydoc boost::random::niederreiter_base2_engine::dimension() */  std::size_t dimension() const { return base_t::dimension(); }  /** @copydoc boost::random::niederreiter_base2_engine::operator()() */  result_type operator()()  {    return base_t::operator()();  }  /** @copydoc boost::random::niederreiter_base2_engine::discard(boost::uintmax_t)   * Throws: bad_alloc.   */  void discard(boost::uintmax_t z)  {    base_t::discard(z);  }  /** Returns true if the two generators will produce identical sequences of outputs. */  BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(faure_engine, x, y)  { return static_cast<const base_t&>(x) == y; }  /** Returns true if the two generators will produce different sequences of outputs. */  BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(faure_engine)  /** Writes the textual representation of the generator to a @c std::ostream. */  BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, faure_engine, s)  { return os << static_cast<const base_t&>(s); }  /** Reads the textual representation of the generator from a @c std::istream. */  BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, faure_engine, s)  { return is >> static_cast<base_t&>(s); }#endif // BOOST_RANDOM_DOXYGENprivate:/** @cond hide_private_members */  void compute_seq(SeqSizeT seq)  {    qrng_detail::check_seed_sign(seq);    this->lattice.update(seq, this->state_begin(), this->state_end());  }/** @endcond */};/** * @attention This specialization of \faure_engine supports up to 1117 dimensions. * * However, it is possible to provide your own prime table to \faure_engine should the default one be insufficient. */typedef faure_engine<double, boost::uint_least64_t, default_faure_prime_table> faure;} // namespace random} // namespace boost#endif // BOOST_RANDOM_FAURE_HPP
 |