| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 | /* boost random/gamma_distribution.hpp header file * * Copyright Jens Maurer 2002 * Copyright Steven Watanabe 2010 * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * See http://www.boost.org for most recent version including documentation. * * $Id$ * */#ifndef BOOST_RANDOM_GAMMA_DISTRIBUTION_HPP#define BOOST_RANDOM_GAMMA_DISTRIBUTION_HPP#include <boost/config/no_tr1/cmath.hpp>#include <istream>#include <iosfwd>#include <boost/assert.hpp>#include <boost/limits.hpp>#include <boost/static_assert.hpp>#include <boost/random/detail/config.hpp>#include <boost/random/exponential_distribution.hpp>namespace boost {namespace random {// The algorithm is taken from Knuth/** * The gamma distribution is a continuous distribution with two * parameters alpha and beta.  It produces values > 0. * * It has * \f$\displaystyle p(x) = x^{\alpha-1}\frac{e^{-x/\beta}}{\beta^\alpha\Gamma(\alpha)}\f$. */template<class RealType = double>class gamma_distribution{public:    typedef RealType input_type;    typedef RealType result_type;    class param_type    {    public:        typedef gamma_distribution distribution_type;        /**         * Constructs a @c param_type object from the "alpha" and "beta"         * parameters.         *         * Requires: alpha > 0 && beta > 0         */        param_type(const RealType& alpha_arg = RealType(1.0),                   const RealType& beta_arg = RealType(1.0))          : _alpha(alpha_arg), _beta(beta_arg)        {        }        /** Returns the "alpha" parameter of the distribution. */        RealType alpha() const { return _alpha; }        /** Returns the "beta" parameter of the distribution. */        RealType beta() const { return _beta; }#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS        /** Writes the parameters to a @c std::ostream. */        template<class CharT, class Traits>        friend std::basic_ostream<CharT, Traits>&        operator<<(std::basic_ostream<CharT, Traits>& os,                   const param_type& parm)        {            os << parm._alpha << ' ' << parm._beta;            return os;        }                /** Reads the parameters from a @c std::istream. */        template<class CharT, class Traits>        friend std::basic_istream<CharT, Traits>&        operator>>(std::basic_istream<CharT, Traits>& is, param_type& parm)        {            is >> parm._alpha >> std::ws >> parm._beta;            return is;        }#endif        /** Returns true if the two sets of parameters are the same. */        friend bool operator==(const param_type& lhs, const param_type& rhs)        {            return lhs._alpha == rhs._alpha && lhs._beta == rhs._beta;        }        /** Returns true if the two sets fo parameters are different. */        friend bool operator!=(const param_type& lhs, const param_type& rhs)        {            return !(lhs == rhs);        }    private:        RealType _alpha;        RealType _beta;    };#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS    BOOST_STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer);#endif    /**     * Creates a new gamma_distribution with parameters "alpha" and "beta".     *     * Requires: alpha > 0 && beta > 0     */    explicit gamma_distribution(const result_type& alpha_arg = result_type(1.0),                                const result_type& beta_arg = result_type(1.0))      : _exp(result_type(1)), _alpha(alpha_arg), _beta(beta_arg)    {        BOOST_ASSERT(_alpha > result_type(0));        BOOST_ASSERT(_beta > result_type(0));        init();    }    /** Constructs a @c gamma_distribution from its parameters. */    explicit gamma_distribution(const param_type& parm)      : _exp(result_type(1)), _alpha(parm.alpha()), _beta(parm.beta())    {        init();    }    // compiler-generated copy ctor and assignment operator are fine    /** Returns the "alpha" paramter of the distribution. */    RealType alpha() const { return _alpha; }    /** Returns the "beta" parameter of the distribution. */    RealType beta() const { return _beta; }    /** Returns the smallest value that the distribution can produce. */    RealType min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return 0; }    /* Returns the largest value that the distribution can produce. */    RealType max BOOST_PREVENT_MACRO_SUBSTITUTION () const    { return (std::numeric_limits<RealType>::infinity)(); }    /** Returns the parameters of the distribution. */    param_type param() const { return param_type(_alpha, _beta); }    /** Sets the parameters of the distribution. */    void param(const param_type& parm)    {        _alpha = parm.alpha();        _beta = parm.beta();        init();    }        /**     * Effects: Subsequent uses of the distribution do not depend     * on values produced by any engine prior to invoking reset.     */    void reset() { _exp.reset(); }    /**     * Returns a random variate distributed according to     * the gamma distribution.     */    template<class Engine>    result_type operator()(Engine& eng)    {#ifndef BOOST_NO_STDC_NAMESPACE        // allow for Koenig lookup        using std::tan; using std::sqrt; using std::exp; using std::log;        using std::pow;#endif        if(_alpha == result_type(1)) {            return _exp(eng) * _beta;        } else if(_alpha > result_type(1)) {            // Can we have a boost::mathconst please?            const result_type pi = result_type(3.14159265358979323846);            for(;;) {                result_type y = tan(pi * uniform_01<RealType>()(eng));                result_type x = sqrt(result_type(2)*_alpha-result_type(1))*y                    + _alpha-result_type(1);                if(x <= result_type(0))                    continue;                if(uniform_01<RealType>()(eng) >                    (result_type(1)+y*y) * exp((_alpha-result_type(1))                                               *log(x/(_alpha-result_type(1)))                                               - sqrt(result_type(2)*_alpha                                                      -result_type(1))*y))                    continue;                return x * _beta;            }        } else /* alpha < 1.0 */ {            for(;;) {                result_type u = uniform_01<RealType>()(eng);                result_type y = _exp(eng);                result_type x, q;                if(u < _p) {                    x = exp(-y/_alpha);                    q = _p*exp(-x);                } else {                    x = result_type(1)+y;                    q = _p + (result_type(1)-_p) * pow(x,_alpha-result_type(1));                }                if(u >= q)                    continue;                return x * _beta;            }        }    }    template<class URNG>    RealType operator()(URNG& urng, const param_type& parm) const    {        return gamma_distribution(parm)(urng);    }#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS    /** Writes a @c gamma_distribution to a @c std::ostream. */    template<class CharT, class Traits>    friend std::basic_ostream<CharT,Traits>&    operator<<(std::basic_ostream<CharT,Traits>& os,               const gamma_distribution& gd)    {        os << gd.param();        return os;    }        /** Reads a @c gamma_distribution from a @c std::istream. */    template<class CharT, class Traits>    friend std::basic_istream<CharT,Traits>&    operator>>(std::basic_istream<CharT,Traits>& is, gamma_distribution& gd)    {        gd.read(is);        return is;    }#endif    /**     * Returns true if the two distributions will produce identical     * sequences of random variates given equal generators.     */    friend bool operator==(const gamma_distribution& lhs,                           const gamma_distribution& rhs)    {        return lhs._alpha == rhs._alpha            && lhs._beta == rhs._beta            && lhs._exp == rhs._exp;    }    /**     * Returns true if the two distributions can produce different     * sequences of random variates, given equal generators.     */    friend bool operator!=(const gamma_distribution& lhs,                           const gamma_distribution& rhs)    {        return !(lhs == rhs);    }private:    /// \cond hide_private_members    template<class CharT, class Traits>    void read(std::basic_istream<CharT, Traits>& is)    {        param_type parm;        if(is >> parm) {            param(parm);        }    }    void init()    {#ifndef BOOST_NO_STDC_NAMESPACE        // allow for Koenig lookup        using std::exp;#endif        _p = exp(result_type(1)) / (_alpha + exp(result_type(1)));    }    /// \endcond    exponential_distribution<RealType> _exp;    result_type _alpha;    result_type _beta;    // some data precomputed from the parameters    result_type _p;};} // namespace randomusing random::gamma_distribution;} // namespace boost#endif // BOOST_RANDOM_GAMMA_DISTRIBUTION_HPP
 |