| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 | //=======================================================================// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek//// Distributed under the Boost Software License, Version 1.0. (See// accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)//=======================================================================#ifndef BOOST_GRAPH_DETAIL_CONNECTED_COMPONENTS_HPP#define BOOST_GRAPH_DETAIL_CONNECTED_COMPONENTS_HPP#if defined(__sgi) && !defined(__GNUC__)#pragma set woff 1234#endif#include <boost/operators.hpp>namespace boost{namespace detail{    //=========================================================================    // Implementation details of connected_components    // This is used both in the connected_components algorithm and in    // the kosaraju strong components algorithm during the second DFS    // traversal.    template < class ComponentsPA, class DFSVisitor >    class components_recorder : public DFSVisitor    {        typedef typename property_traits< ComponentsPA >::value_type comp_type;    public:        components_recorder(ComponentsPA c, comp_type& c_count, DFSVisitor v)        : DFSVisitor(v), m_component(c), m_count(c_count)        {        }        template < class Vertex, class Graph >        void start_vertex(Vertex u, Graph& g)        {            ++m_count;            DFSVisitor::start_vertex(u, g);        }        template < class Vertex, class Graph >        void discover_vertex(Vertex u, Graph& g)        {            put(m_component, u, m_count);            DFSVisitor::discover_vertex(u, g);        }    protected:        ComponentsPA m_component;        comp_type& m_count;    };    template < class DiscoverTimeMap, class FinishTimeMap, class TimeT,        class DFSVisitor >    class time_recorder : public DFSVisitor    {    public:        time_recorder(            DiscoverTimeMap d, FinishTimeMap f, TimeT& t, DFSVisitor v)        : DFSVisitor(v), m_discover_time(d), m_finish_time(f), m_t(t)        {        }        template < class Vertex, class Graph >        void discover_vertex(Vertex u, Graph& g)        {            put(m_discover_time, u, ++m_t);            DFSVisitor::discover_vertex(u, g);        }        template < class Vertex, class Graph >        void finish_vertex(Vertex u, Graph& g)        {            put(m_finish_time, u, ++m_t);            DFSVisitor::discover_vertex(u, g);        }    protected:        DiscoverTimeMap m_discover_time;        FinishTimeMap m_finish_time;        TimeT m_t;    };    template < class DiscoverTimeMap, class FinishTimeMap, class TimeT,        class DFSVisitor >    time_recorder< DiscoverTimeMap, FinishTimeMap, TimeT, DFSVisitor >    record_times(DiscoverTimeMap d, FinishTimeMap f, TimeT& t, DFSVisitor vis)    {        return time_recorder< DiscoverTimeMap, FinishTimeMap, TimeT,            DFSVisitor >(d, f, t, vis);    }    //=========================================================================    // Implementation detail of dynamic_components    //-------------------------------------------------------------------------    // Helper functions for the component_index class    // Record the representative vertices in the header array.    // Representative vertices now point to the component number.    template < class Parent, class OutputIterator, class Integer >    inline void build_components_header(        Parent p, OutputIterator header, Integer num_nodes)    {        Parent component = p;        Integer component_num = 0;        for (Integer v = 0; v != num_nodes; ++v)            if (p[v] == v)            {                *header++ = v;                component[v] = component_num++;            }    }    // Pushes x onto the front of the list. The list is represented in    // an array.    template < class Next, class T, class V >    inline void push_front(Next next, T& head, V x)    {        T tmp = head;        head = x;        next[x] = tmp;    }    // Create a linked list of the vertices in each component    // by reusing the representative array.    template < class Parent1, class Parent2, class Integer >    void link_components(Parent1 component, Parent2 header, Integer num_nodes,        Integer num_components)    {        // Make the non-representative vertices point to their component        Parent1 representative = component;        for (Integer v = 0; v != num_nodes; ++v)            if (component[v] >= num_components || header[component[v]] != v)                component[v] = component[representative[v]];        // initialize the "head" of the lists to "NULL"        std::fill_n(header, num_components, num_nodes);        // Add each vertex to the linked list for its component        Parent1 next = component;        for (Integer k = 0; k != num_nodes; ++k)            push_front(next, header[component[k]], k);    }    template < class IndexContainer, class HeaderContainer >    void construct_component_index(        IndexContainer& index, HeaderContainer& header)    {        build_components_header(index.begin(), std::back_inserter(header),            index.end() - index.begin());        link_components(index.begin(), header.begin(),            index.end() - index.begin(), header.end() - header.begin());    }    template < class IndexIterator, class Integer, class Distance >    class component_iterator    : boost::forward_iterator_helper<          component_iterator< IndexIterator, Integer, Distance >, Integer,          Distance, Integer*, Integer& >    {    public:        typedef component_iterator self;        IndexIterator next;        Integer node;        typedef std::forward_iterator_tag iterator_category;        typedef Integer value_type;        typedef Integer& reference;        typedef Integer* pointer;        typedef Distance difference_type;        component_iterator() {}        component_iterator(IndexIterator x, Integer i) : next(x), node(i) {}        Integer operator*() const { return node; }        self& operator++()        {            node = next[node];            return *this;        }    };    template < class IndexIterator, class Integer, class Distance >    inline bool operator==(        const component_iterator< IndexIterator, Integer, Distance >& x,        const component_iterator< IndexIterator, Integer, Distance >& y)    {        return x.node == y.node;    }} // namespace detail} // namespace detail#if defined(__sgi) && !defined(__GNUC__)#pragma reset woff 1234#endif#endif
 |