| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 | /*!@fileDefines `boost::hana::unpack`.@copyright Louis Dionne 2013-2017Distributed under the Boost Software License, Version 1.0.(See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt) */#ifndef BOOST_HANA_UNPACK_HPP#define BOOST_HANA_UNPACK_HPP#include <boost/hana/fwd/unpack.hpp>#include <boost/hana/accessors.hpp>#include <boost/hana/at.hpp>#include <boost/hana/concept/foldable.hpp>#include <boost/hana/concept/iterable.hpp>#include <boost/hana/concept/struct.hpp>#include <boost/hana/config.hpp>#include <boost/hana/core/dispatch.hpp>#include <boost/hana/first.hpp>#include <boost/hana/functional/partial.hpp>#include <boost/hana/fwd/fold_left.hpp>#include <boost/hana/length.hpp>#include <boost/hana/pair.hpp>#include <boost/hana/second.hpp>#include <cstddef>#include <utility>BOOST_HANA_NAMESPACE_BEGIN    //! @cond    template <typename Xs, typename F>    constexpr decltype(auto) unpack_t::operator()(Xs&& xs, F&& f) const {        using S = typename hana::tag_of<Xs>::type;        using Unpack = BOOST_HANA_DISPATCH_IF(unpack_impl<S>,            hana::Foldable<S>::value        );    #ifndef BOOST_HANA_CONFIG_DISABLE_CONCEPT_CHECKS        static_assert(hana::Foldable<S>::value,        "hana::unpack(xs, f) requires 'xs' to be Foldable");    #endif        return Unpack::apply(static_cast<Xs&&>(xs), static_cast<F&&>(f));    }    //! @endcond    template <typename T, bool condition>    struct unpack_impl<T, when<condition>> : default_ {        template <typename Xs, typename F>        static constexpr decltype(auto) apply(Xs&& xs, F&& f) {            return hana::fold_left(static_cast<Xs&&>(xs),                                   static_cast<F&&>(f),                                   hana::partial)();        }    };    template <typename It>    struct unpack_impl<It, when<        hana::Iterable<It>::value && !is_default<length_impl<It>>::value    >> {        template <typename Xs, typename F, std::size_t ...i>        static constexpr decltype(auto)        unpack_helper(Xs&& xs, F&& f, std::index_sequence<i...>) {            return static_cast<F&&>(f)(hana::at_c<i>(static_cast<Xs&&>(xs))...);        }        template <typename Xs, typename F>        static constexpr decltype(auto) apply(Xs&& xs, F&& f) {            constexpr std::size_t N = decltype(hana::length(xs))::value;            return unpack_helper(static_cast<Xs&&>(xs), static_cast<F&&>(f),                                 std::make_index_sequence<N>{});        }    };    template <typename T, std::size_t N>    struct unpack_impl<T[N]> {        template <typename Xs, typename F, std::size_t ...i>        static constexpr decltype(auto)        unpack_helper(Xs&& xs, F&& f, std::index_sequence<i...>) {            return static_cast<F&&>(f)(static_cast<Xs&&>(xs)[i]...);        }        template <typename Xs, typename F>        static constexpr decltype(auto) apply(Xs&& xs, F&& f) {            return unpack_impl::unpack_helper(static_cast<Xs&&>(xs),                                              static_cast<F&&>(f),                                              std::make_index_sequence<N>{});        }    };    //////////////////////////////////////////////////////////////////////////    // Model for Products    //////////////////////////////////////////////////////////////////////////    template <typename T>    struct unpack_impl<T, when<hana::Product<T>::value>> {        template <typename P, typename F>        static constexpr decltype(auto) apply(P&& p, F&& f) {            return static_cast<F&&>(f)(                hana::first(static_cast<P&&>(p)),                hana::second(static_cast<P&&>(p))            );        }    };    //////////////////////////////////////////////////////////////////////////    // Model for Structs    //////////////////////////////////////////////////////////////////////////    namespace struct_detail {        // This is equivalent to `demux`, except that `demux` can't forward        // the `udt` because it does not know the `g`s are accessors. Hence,        // this can result in faster code.        struct almost_demux {            template <typename F, typename Udt, typename ...Members>            constexpr decltype(auto)            operator()(F&& f, Udt&& udt, Members&& ...g) const {                return static_cast<F&&>(f)(hana::make_pair(                    hana::first(static_cast<Members&&>(g)),                    hana::second(static_cast<Members&&>(g))                                                (static_cast<Udt&&>(udt))                )...);            }        };    }    template <typename S>    struct unpack_impl<S, when<hana::Struct<S>::value>> {        template <typename Udt, typename F>        static constexpr decltype(auto) apply(Udt&& udt, F&& f) {            return hana::unpack(hana::accessors<S>(),                hana::partial(struct_detail::almost_demux{},                              static_cast<F&&>(f),                              static_cast<Udt&&>(udt)));        }    };BOOST_HANA_NAMESPACE_END#endif // !BOOST_HANA_UNPACK_HPP
 |