| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506 | //  Copyright John Maddock 2006.//  Copyright Paul A. Bristow 2006, 2012, 2017.//  Copyright Thomas Mang 2012.//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_STATS_STUDENTS_T_HPP#define BOOST_STATS_STUDENTS_T_HPP// http://en.wikipedia.org/wiki/Student%27s_t_distribution// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3664.htm#include <boost/math/distributions/fwd.hpp>#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x).#include <boost/math/special_functions/digamma.hpp>#include <boost/math/distributions/complement.hpp>#include <boost/math/distributions/detail/common_error_handling.hpp>#include <boost/math/distributions/normal.hpp> #include <utility>#ifdef BOOST_MSVC# pragma warning(push)# pragma warning(disable: 4702) // unreachable code (return after domain_error throw).#endifnamespace boost { namespace math {template <class RealType = double, class Policy = policies::policy<> >class students_t_distribution{public:   typedef RealType value_type;   typedef Policy policy_type;   students_t_distribution(RealType df) : df_(df)   { // Constructor.      RealType result;      detail::check_df_gt0_to_inf( // Checks that df > 0 or df == inf.         "boost::math::students_t_distribution<%1%>::students_t_distribution", df_, &result, Policy());   } // students_t_distribution   RealType degrees_of_freedom()const   {      return df_;   }   // Parameter estimation:   static RealType find_degrees_of_freedom(      RealType difference_from_mean,      RealType alpha,      RealType beta,      RealType sd,      RealType hint = 100);private:   // Data member:   RealType df_;  // degrees of freedom is a real number > 0 or +infinity.};typedef students_t_distribution<double> students_t; // Convenience typedef for double version.template <class RealType, class Policy>inline const std::pair<RealType, RealType> range(const students_t_distribution<RealType, Policy>& /*dist*/){ // Range of permissible values for random variable x.  // Now including infinity.   using boost::math::tools::max_value;   //return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());   return std::pair<RealType, RealType>(((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>()), ((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? +std::numeric_limits<RealType>::infinity() : +max_value<RealType>()));}template <class RealType, class Policy>inline const std::pair<RealType, RealType> support(const students_t_distribution<RealType, Policy>& /*dist*/){ // Range of supported values for random variable x.  // Now including infinity.   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.   using boost::math::tools::max_value;   //return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());   return std::pair<RealType, RealType>(((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>()), ((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? +std::numeric_limits<RealType>::infinity() : +max_value<RealType>()));}template <class RealType, class Policy>inline RealType pdf(const students_t_distribution<RealType, Policy>& dist, const RealType& x){   BOOST_FPU_EXCEPTION_GUARD   BOOST_MATH_STD_USING  // for ADL of std functions.   RealType error_result;   if(false == detail::check_x_not_NaN(      "boost::math::pdf(const students_t_distribution<%1%>&, %1%)", x, &error_result, Policy()))      return error_result;   RealType df = dist.degrees_of_freedom();   if(false == detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity.      "boost::math::pdf(const students_t_distribution<%1%>&, %1%)", df, &error_result, Policy()))      return error_result;   RealType result;   if ((boost::math::isinf)(x))   { // - or +infinity.     result = static_cast<RealType>(0);     return result;   }   RealType limit = policies::get_epsilon<RealType, Policy>();   // Use policies so that if policy requests lower precision,    // then get the normal distribution approximation earlier.   limit = static_cast<RealType>(1) / limit; // 1/eps   // for 64-bit double 1/eps = 4503599627370496   if (df > limit)   { // Special case for really big degrees_of_freedom > 1 / eps      // - use normal distribution which is much faster and more accurate.     normal_distribution<RealType, Policy> n(0, 1);      result = pdf(n, x);   }   else   { //      RealType basem1 = x * x / df;     if(basem1 < 0.125)     {        result = exp(-boost::math::log1p(basem1, Policy()) * (1+df) / 2);     }     else     {        result = pow(1 / (1 + basem1), (df + 1) / 2);     }     result /= sqrt(df) * boost::math::beta(df / 2, RealType(0.5f), Policy());   }   return result;} // pdftemplate <class RealType, class Policy>inline RealType cdf(const students_t_distribution<RealType, Policy>& dist, const RealType& x){   RealType error_result;   // degrees_of_freedom > 0 or infinity check:   RealType df = dist.degrees_of_freedom();   if (false == detail::check_df_gt0_to_inf(  // Check that df > 0 or == +infinity.     "boost::math::cdf(const students_t_distribution<%1%>&, %1%)", df, &error_result, Policy()))   {     return error_result;   }   // Check for bad x first.   if(false == detail::check_x_not_NaN(      "boost::math::cdf(const students_t_distribution<%1%>&, %1%)", x, &error_result, Policy()))   {       return error_result;   }   if (x == 0)   { // Special case with exact result.     return static_cast<RealType>(0.5);   }   if ((boost::math::isinf)(x))   { // x == - or + infinity, regardless of df.     return ((x < 0) ? static_cast<RealType>(0) : static_cast<RealType>(1));   }   RealType limit = policies::get_epsilon<RealType, Policy>();   // Use policies so that if policy requests lower precision,    // then get the normal distribution approximation earlier.   limit = static_cast<RealType>(1) / limit; // 1/eps   // for 64-bit double 1/eps = 4503599627370496   if (df > limit)   { // Special case for really big degrees_of_freedom > 1 / eps (perhaps infinite?)     // - use normal distribution which is much faster and more accurate.     normal_distribution<RealType, Policy> n(0, 1);      RealType result = cdf(n, x);     return result;   }   else   { // normal df case.     //     // Calculate probability of Student's t using the incomplete beta function.     // probability = ibeta(degrees_of_freedom / 2, 1/2, degrees_of_freedom / (degrees_of_freedom + t*t))     //     // However when t is small compared to the degrees of freedom, that formula     // suffers from rounding error, use the identity formula to work around     // the problem:     //     // I[x](a,b) = 1 - I[1-x](b,a)     //     // and:     //     //     x = df / (df + t^2)     //     // so:     //     // 1 - x = t^2 / (df + t^2)     //     RealType x2 = x * x;     RealType probability;     if(df > 2 * x2)     {        RealType z = x2 / (df + x2);        probability = ibetac(static_cast<RealType>(0.5), df / 2, z, Policy()) / 2;     }     else     {        RealType z = df / (df + x2);        probability = ibeta(df / 2, static_cast<RealType>(0.5), z, Policy()) / 2;     }     return (x > 0 ? 1   - probability : probability);  }} // cdftemplate <class RealType, class Policy>inline RealType quantile(const students_t_distribution<RealType, Policy>& dist, const RealType& p){   BOOST_MATH_STD_USING // for ADL of std functions   //   // Obtain parameters:   RealType probability = p;    // Check for domain errors:   RealType df = dist.degrees_of_freedom();   static const char* function = "boost::math::quantile(const students_t_distribution<%1%>&, %1%)";   RealType error_result;   if(false == (detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity.      function, df, &error_result, Policy())         && detail::check_probability(function, probability, &error_result, Policy())))      return error_result;   // Special cases, regardless of degrees_of_freedom.   if (probability == 0)      return -policies::raise_overflow_error<RealType>(function, 0, Policy());   if (probability == 1)     return policies::raise_overflow_error<RealType>(function, 0, Policy());   if (probability == static_cast<RealType>(0.5))     return 0;  //   //#if 0   // This next block is disabled in favour of a faster method than   // incomplete beta inverse, but code retained for future reference:   //   // Calculate quantile of Student's t using the incomplete beta function inverse:   probability = (probability > 0.5) ? 1 - probability : probability;   RealType t, x, y;   x = ibeta_inv(degrees_of_freedom / 2, RealType(0.5), 2 * probability, &y);   if(degrees_of_freedom * y > tools::max_value<RealType>() * x)      t = tools::overflow_error<RealType>(function);   else      t = sqrt(degrees_of_freedom * y / x);   //   // Figure out sign based on the size of p:   //   if(p < 0.5)      t = -t;   return t;#endif   //   // Depending on how many digits RealType has, this may forward   // to the incomplete beta inverse as above.  Otherwise uses a   // faster method that is accurate to ~15 digits everywhere   // and a couple of epsilon at double precision and in the central    // region where most use cases will occur...   //   return boost::math::detail::fast_students_t_quantile(df, probability, Policy());} // quantiletemplate <class RealType, class Policy>inline RealType cdf(const complemented2_type<students_t_distribution<RealType, Policy>, RealType>& c){   return cdf(c.dist, -c.param);}template <class RealType, class Policy>inline RealType quantile(const complemented2_type<students_t_distribution<RealType, Policy>, RealType>& c){   return -quantile(c.dist, c.param);}//// Parameter estimation follows://namespace detail{//// Functors for finding degrees of freedom://template <class RealType, class Policy>struct sample_size_func{   sample_size_func(RealType a, RealType b, RealType s, RealType d)      : alpha(a), beta(b), ratio(s*s/(d*d)) {}   RealType operator()(const RealType& df)   {      if(df <= tools::min_value<RealType>())      { //          return 1;      }      students_t_distribution<RealType, Policy> t(df);      RealType qa = quantile(complement(t, alpha));      RealType qb = quantile(complement(t, beta));      qa += qb;      qa *= qa;      qa *= ratio;      qa -= (df + 1);      return qa;   }   RealType alpha, beta, ratio;};}  // namespace detailtemplate <class RealType, class Policy>RealType students_t_distribution<RealType, Policy>::find_degrees_of_freedom(      RealType difference_from_mean,      RealType alpha,      RealType beta,      RealType sd,      RealType hint){   static const char* function = "boost::math::students_t_distribution<%1%>::find_degrees_of_freedom";   //   // Check for domain errors:   //   RealType error_result;   if(false == detail::check_probability(      function, alpha, &error_result, Policy())         && detail::check_probability(function, beta, &error_result, Policy()))      return error_result;   if(hint <= 0)      hint = 1;   detail::sample_size_func<RealType, Policy> f(alpha, beta, sd, difference_from_mean);   tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());   boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();   std::pair<RealType, RealType> r = tools::bracket_and_solve_root(f, hint, RealType(2), false, tol, max_iter, Policy());   RealType result = r.first + (r.second - r.first) / 2;   if(max_iter >= policies::get_max_root_iterations<Policy>())   {      return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"         " either there is no answer to how many degrees of freedom are required"         " or the answer is infinite.  Current best guess is %1%", result, Policy());   }   return result;}template <class RealType, class Policy>inline RealType mode(const students_t_distribution<RealType, Policy>& /*dist*/){  // Assume no checks on degrees of freedom are useful (unlike mean).   return 0; // Always zero by definition.}template <class RealType, class Policy>inline RealType median(const students_t_distribution<RealType, Policy>& /*dist*/){   // Assume no checks on degrees of freedom are useful (unlike mean).   return 0; // Always zero by definition.}// See section 5.1 on moments at  http://en.wikipedia.org/wiki/Student%27s_t-distributiontemplate <class RealType, class Policy>inline RealType mean(const students_t_distribution<RealType, Policy>& dist){  // Revised for https://svn.boost.org/trac/boost/ticket/7177   RealType df = dist.degrees_of_freedom();   if(((boost::math::isnan)(df)) || (df <= 1) )    { // mean is undefined for moment <= 1!      return policies::raise_domain_error<RealType>(      "boost::math::mean(students_t_distribution<%1%> const&, %1%)",      "Mean is undefined for degrees of freedom < 1 but got %1%.", df, Policy());      return std::numeric_limits<RealType>::quiet_NaN();   }   return 0;} // meantemplate <class RealType, class Policy>inline RealType variance(const students_t_distribution<RealType, Policy>& dist){ // http://en.wikipedia.org/wiki/Student%27s_t-distribution  // Revised for https://svn.boost.org/trac/boost/ticket/7177  RealType df = dist.degrees_of_freedom();  if ((boost::math::isnan)(df) || (df <= 2))  { // NaN or undefined for <= 2.     return policies::raise_domain_error<RealType>(      "boost::math::variance(students_t_distribution<%1%> const&, %1%)",      "variance is undefined for degrees of freedom <= 2, but got %1%.",      df, Policy());    return std::numeric_limits<RealType>::quiet_NaN(); // Undefined.  }  if ((boost::math::isinf)(df))  { // +infinity.    return 1;  }  RealType limit = policies::get_epsilon<RealType, Policy>();  // Use policies so that if policy requests lower precision,   // then get the normal distribution approximation earlier.  limit = static_cast<RealType>(1) / limit; // 1/eps  // for 64-bit double 1/eps = 4503599627370496  if (df > limit)  { // Special case for really big degrees_of_freedom > 1 / eps.    return 1;  }  else  {    return df / (df - 2);  }} // variancetemplate <class RealType, class Policy>inline RealType skewness(const students_t_distribution<RealType, Policy>& dist){    RealType df = dist.degrees_of_freedom();   if( ((boost::math::isnan)(df)) || (dist.degrees_of_freedom() <= 3))   { // Undefined for moment k = 3.      return policies::raise_domain_error<RealType>(         "boost::math::skewness(students_t_distribution<%1%> const&, %1%)",         "Skewness is undefined for degrees of freedom <= 3, but got %1%.",         dist.degrees_of_freedom(), Policy());      return std::numeric_limits<RealType>::quiet_NaN();   }   return 0; // For all valid df, including infinity.} // skewnesstemplate <class RealType, class Policy>inline RealType kurtosis(const students_t_distribution<RealType, Policy>& dist){   RealType df = dist.degrees_of_freedom();   if(((boost::math::isnan)(df)) || (df <= 4))   { // Undefined or infinity for moment k = 4.      return policies::raise_domain_error<RealType>(       "boost::math::kurtosis(students_t_distribution<%1%> const&, %1%)",       "Kurtosis is undefined for degrees of freedom <= 4, but got %1%.",        df, Policy());        return std::numeric_limits<RealType>::quiet_NaN(); // Undefined.   }   if ((boost::math::isinf)(df))   { // +infinity.     return 3;   }   RealType limit = policies::get_epsilon<RealType, Policy>();   // Use policies so that if policy requests lower precision,    // then get the normal distribution approximation earlier.   limit = static_cast<RealType>(1) / limit; // 1/eps   // for 64-bit double 1/eps = 4503599627370496   if (df > limit)   { // Special case for really big degrees_of_freedom > 1 / eps.     return 3;   }   else   {     //return 3 * (df - 2) / (df - 4); re-arranged to     return 6 / (df - 4) + 3;   }} // kurtosistemplate <class RealType, class Policy>inline RealType kurtosis_excess(const students_t_distribution<RealType, Policy>& dist){   // see http://mathworld.wolfram.com/Kurtosis.html   RealType df = dist.degrees_of_freedom();   if(((boost::math::isnan)(df)) || (df <= 4))   { // Undefined or infinity for moment k = 4.     return policies::raise_domain_error<RealType>(       "boost::math::kurtosis_excess(students_t_distribution<%1%> const&, %1%)",       "Kurtosis_excess is undefined for degrees of freedom <= 4, but got %1%.",      df, Policy());     return std::numeric_limits<RealType>::quiet_NaN(); // Undefined.   }   if ((boost::math::isinf)(df))   { // +infinity.     return 0;   }   RealType limit = policies::get_epsilon<RealType, Policy>();   // Use policies so that if policy requests lower precision,    // then get the normal distribution approximation earlier.   limit = static_cast<RealType>(1) / limit; // 1/eps   // for 64-bit double 1/eps = 4503599627370496   if (df > limit)   { // Special case for really big degrees_of_freedom > 1 / eps.     return 0;   }   else   {     return 6 / (df - 4);   }}template <class RealType, class Policy>inline RealType entropy(const students_t_distribution<RealType, Policy>& dist){   using std::log;   using std::sqrt;   RealType v = dist.degrees_of_freedom();   RealType vp1 = (v+1)/2;   RealType vd2 = v/2;   return vp1*(digamma(vp1) - digamma(vd2)) + log(sqrt(v)*beta(vd2, RealType(1)/RealType(2)));}} // namespace math} // namespace boost#ifdef BOOST_MSVC# pragma warning(pop)#endif// This include must be at the end, *after* the accessors// for this distribution have been defined, in order to// keep compilers that support two-phase lookup happy.#include <boost/math/distributions/detail/derived_accessors.hpp>#endif // BOOST_STATS_STUDENTS_T_HPP
 |