| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244 | /*=============================================================================    Copyright (c) 2012 Paul Fultz II    first_of.h    Distributed under the Boost Software License, Version 1.0. (See accompanying    file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)==============================================================================*/#ifndef BOOST_HOF_GUARD_FUNCTION_CONDITIONAL_H#define BOOST_HOF_GUARD_FUNCTION_CONDITIONAL_H/// first_of/// ========/// /// Description/// -----------/// /// The `first_of` function adaptor combines several functions together. If/// the first function can not be called, then it will try to call the next/// function. This can be very useful when overloading functions using/// template constraints(such as with `enable_if`)./// /// Note: This is different than the [`match`](match.md) function adaptor, which/// can lead to ambiguities. Instead, `first_of` will call the first function/// that is callable, regardless if there is another function that could be/// called as well./// /// Synopsis/// --------/// ///     template<class... Fs>///     constexpr first_of_adaptor<Fs...> first_of(Fs... fs);/// /// Requirements/// ------------/// /// Fs must be:/// /// * [ConstInvocable](ConstInvocable)/// * MoveConstructible/// /// Example/// -------/// ///     #include <boost/hof.hpp>///     #include <iostream>///     using namespace boost::hof;/// ///     struct for_ints///     {///         void operator()(int) const///         {///             printf("Int\n");///         }///     };/// ///     struct for_floats///     {///         void operator()(float) const///         {///             printf("Float\n");///         }///     };/// ///     int main() {///         first_of(for_ints(), for_floats())(3.0);///     }/// /// This will print `Int` because the `for_floats` function object won't ever be/// called. Due to the conversion rules in C++, the `for_ints` function can be/// called on floats, so it is chosen by `first_of` first, even though/// `for_floats` is a better match./// /// So, the order of the functions in the `first_of_adaptor` are very important/// to how the function is chosen./// /// References/// ----------/// /// * [POO51](http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0051r2.pdf) - Proposal for C++///   Proposal for C++ generic overload function/// * [Conditional overloading](<Conditional overloading>)/// #include <boost/hof/reveal.hpp>#include <boost/hof/detail/compressed_pair.hpp>#include <boost/hof/detail/callable_base.hpp>#include <boost/hof/detail/delegate.hpp>#include <boost/hof/detail/join.hpp>#include <boost/hof/detail/seq.hpp>#include <boost/hof/detail/make.hpp>#include <boost/hof/detail/static_const_var.hpp>namespace boost { namespace hof {namespace detail {template<class F1, class F2>struct basic_first_of_adaptor : F1, F2{    BOOST_HOF_INHERIT_DEFAULT(basic_first_of_adaptor, F1, F2)    template<class A, class B,        BOOST_HOF_ENABLE_IF_CONVERTIBLE(A, F1),        BOOST_HOF_ENABLE_IF_CONVERTIBLE(B, F2)>    constexpr basic_first_of_adaptor(A&& f1, B&& f2)    noexcept(BOOST_HOF_IS_NOTHROW_CONSTRUCTIBLE(F1, A&&) && BOOST_HOF_IS_NOTHROW_CONSTRUCTIBLE(F2, B&&))    : F1(BOOST_HOF_FORWARD(A)(f1)), F2(BOOST_HOF_FORWARD(B)(f2))    {}    template<class X,        class=typename std::enable_if<        BOOST_HOF_IS_CONVERTIBLE(X, F1) &&         BOOST_HOF_IS_DEFAULT_CONSTRUCTIBLE(F2)    >::type>    constexpr basic_first_of_adaptor(X&& x)     BOOST_HOF_NOEXCEPT_CONSTRUCTIBLE(F1, X&&)    : F1(BOOST_HOF_FORWARD(X)(x))    {}     template<class... Ts>    struct select    : std::conditional    <        is_invocable<F1, Ts...>::value,         F1,        F2    >    {};    BOOST_HOF_RETURNS_CLASS(basic_first_of_adaptor);    template<class... Ts, class F=typename select<Ts...>::type>    constexpr BOOST_HOF_SFINAE_RESULT(typename select<Ts...>::type, id_<Ts>...)     operator()(Ts && ... xs) const    BOOST_HOF_SFINAE_RETURNS    (        BOOST_HOF_RETURNS_STATIC_CAST(const F&)(*BOOST_HOF_CONST_THIS)(BOOST_HOF_FORWARD(Ts)(xs)...)    );};template <class F1, class F2>constexpr const F1& which(std::true_type, const F1& f1, const F2&) noexcept{     return f1; }template <class F1, class F2>constexpr const F2& which(std::false_type, const F1&, const F2& f2) noexcept{     return f2; }template<class F1, class F2>struct conditional_kernel : compressed_pair<F1, F2>{    typedef compressed_pair<F1, F2> base;    BOOST_HOF_INHERIT_CONSTRUCTOR(conditional_kernel, base)    template<class... Ts>    struct select    : std::conditional    <        is_invocable<F1, Ts...>::value,         F1,        F2    >    {};    BOOST_HOF_RETURNS_CLASS(conditional_kernel);    template<class... Ts, class PickFirst=is_invocable<F1, Ts...>>    constexpr BOOST_HOF_SFINAE_RESULT(typename select<Ts...>::type, id_<Ts>...)     operator()(Ts && ... xs) const    BOOST_HOF_SFINAE_RETURNS    (        boost::hof::detail::which(            BOOST_HOF_RETURNS_CONSTRUCT(PickFirst)(),            BOOST_HOF_MANGLE_CAST(const F1&)(BOOST_HOF_CONST_THIS->first(xs...)),            BOOST_HOF_MANGLE_CAST(const F2&)(BOOST_HOF_CONST_THIS->second(xs...))        )        (BOOST_HOF_FORWARD(Ts)(xs)...)    );};}template<class F, class... Fs>struct first_of_adaptor : detail::conditional_kernel<F, BOOST_HOF_JOIN(first_of_adaptor, Fs...) >{    typedef first_of_adaptor fit_rewritable_tag;    typedef BOOST_HOF_JOIN(first_of_adaptor, Fs...) kernel_base;    typedef detail::conditional_kernel<F, kernel_base > base;    BOOST_HOF_INHERIT_DEFAULT(first_of_adaptor, base)    template<class X, class... Xs,         BOOST_HOF_ENABLE_IF_CONSTRUCTIBLE(base, X, kernel_base),         BOOST_HOF_ENABLE_IF_CONSTRUCTIBLE(kernel_base, Xs...)>    constexpr first_of_adaptor(X&& f1, Xs&& ... fs)     noexcept(BOOST_HOF_IS_NOTHROW_CONSTRUCTIBLE(base, X&&, kernel_base) && BOOST_HOF_IS_NOTHROW_CONSTRUCTIBLE(kernel_base, Xs&&...))    : base(BOOST_HOF_FORWARD(X)(f1), kernel_base(BOOST_HOF_FORWARD(Xs)(fs)...))    {}    template<class X, class... Xs,         BOOST_HOF_ENABLE_IF_CONSTRUCTIBLE(base, X)>    constexpr first_of_adaptor(X&& f1)     BOOST_HOF_NOEXCEPT_CONSTRUCTIBLE(base, X&&)    : base(BOOST_HOF_FORWARD(X)(f1))    {}    struct failure    : failure_for<F, Fs...>    {};};template<class F>struct first_of_adaptor<F> : F{    typedef first_of_adaptor fit_rewritable_tag;    BOOST_HOF_INHERIT_CONSTRUCTOR(first_of_adaptor, F);    struct failure    : failure_for<F>    {};};template<class F1, class F2>struct first_of_adaptor<F1, F2> : detail::conditional_kernel<F1, F2>{    typedef detail::conditional_kernel<F1, F2> base;    typedef first_of_adaptor fit_rewritable_tag;    BOOST_HOF_INHERIT_CONSTRUCTOR(first_of_adaptor, base);    struct failure    : failure_for<F1, F2>    {};};BOOST_HOF_DECLARE_STATIC_VAR(first_of, detail::make<first_of_adaptor>);}} // namespace boost::hof#endif
 |