| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 | //  (C) Copyright Nick Thompson 2018.//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_MATH_DIFFERENTIATION_FINITE_DIFFERENCE_HPP#define BOOST_MATH_DIFFERENTIATION_FINITE_DIFFERENCE_HPP/* * Performs numerical differentiation by finite-differences. * * All numerical differentiation using finite-differences are ill-conditioned, and these routines are no exception. * A simple argument demonstrates that the error is unbounded as h->0. * Take the one sides finite difference formula f'(x) = (f(x+h)-f(x))/h. * The evaluation of f induces an error as well as the error from the finite-difference approximation, giving * |f'(x) - (f(x+h) -f(x))/h| < h|f''(x)|/2 + (|f(x)|+|f(x+h)|)eps/h =: g(h), where eps is the unit roundoff for the type. * It is reasonable to choose h in a way that minimizes the maximum error bound g(h). * The value of h that minimizes g is h = sqrt(2eps(|f(x)| + |f(x+h)|)/|f''(x)|), and for this value of h the error bound is * sqrt(2eps(|f(x+h) +f(x)||f''(x)|)). * In fact it is not necessary to compute the ratio (|f(x+h)| + |f(x)|)/|f''(x)|; the error bound of ~\sqrt{\epsilon} still holds if we set it to one. * * * For more details on this method of analysis, see * * http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/diffint.pdf * http://web.archive.org/web/20150420195907/http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/diffint.pdf * * * It can be shown on general grounds that when choosing the optimal h, the maximum error in f'(x) is ~(|f(x)|eps)^k/k+1|f^(k-1)(x)|^1/k+1. * From this we can see that full precision can be recovered in the limit k->infinity. * * References: * * 1) Fornberg, Bengt. "Generation of finite difference formulas on arbitrarily spaced grids." Mathematics of computation 51.184 (1988): 699-706. * * * The second algorithm, the complex step derivative, is not ill-conditioned. * However, it requires that your function can be evaluated at complex arguments. * The idea is that f(x+ih) = f(x) +ihf'(x) - h^2f''(x) + ... so f'(x) \approx Im[f(x+ih)]/h. * No subtractive cancellation occurs. The error is ~ eps|f'(x)| + eps^2|f'''(x)|/6; hard to beat that. * * References: * * 1) Squire, William, and George Trapp. "Using complex variables to estimate derivatives of real functions." Siam Review 40.1 (1998): 110-112. */#include <complex>#include <boost/math/special_functions/next.hpp>namespace boost{ namespace math{ namespace differentiation {namespace detail {    template<class Real>    Real make_xph_representable(Real x, Real h)    {        using std::numeric_limits;        // Redefine h so that x + h is representable. Not using this trick leads to large error.        // The compiler flag -ffast-math evaporates these operations . . .        Real temp = x + h;        h = temp - x;        // Handle the case x + h == x:        if (h == 0)        {            h = boost::math::nextafter(x, (numeric_limits<Real>::max)()) - x;        }        return h;    }}template<class F, class Real>Real complex_step_derivative(const F f, Real x){    // Is it really this easy? Yes.    // Note that some authors recommend taking the stepsize h to be smaller than epsilon(), some recommending use of the min().    // This idea was tested over a few billion test cases and found the make the error *much* worse.    // Even 2eps and eps/2 made the error worse, which was surprising.    using std::complex;    using std::numeric_limits;    constexpr const Real step = (numeric_limits<Real>::epsilon)();    constexpr const Real inv_step = 1/(numeric_limits<Real>::epsilon)();    return f(complex<Real>(x, step)).imag()*inv_step;}namespace detail {   template <unsigned>   struct fd_tag {};   template<class F, class Real>   Real finite_difference_derivative(const F f, Real x, Real* error, const fd_tag<1>&)   {      using std::sqrt;      using std::pow;      using std::abs;      using std::numeric_limits;      const Real eps = (numeric_limits<Real>::epsilon)();      // Error bound ~eps^1/2      // Note that this estimate of h differs from the best estimate by a factor of sqrt((|f(x)| + |f(x+h)|)/|f''(x)|).      // Since this factor is invariant under the scaling f -> kf, then we are somewhat justified in approximating it by 1.      // This approximation will get better as we move to higher orders of accuracy.      Real h = 2 * sqrt(eps);      h = detail::make_xph_representable(x, h);      Real yh = f(x + h);      Real y0 = f(x);      Real diff = yh - y0;      if (error)      {         Real ym = f(x - h);         Real ypph = abs(yh - 2 * y0 + ym) / h;         // h*|f''(x)|*0.5 + (|f(x+h)+|f(x)|)*eps/h         *error = ypph / 2 + (abs(yh) + abs(y0))*eps / h;      }      return diff / h;   }   template<class F, class Real>   Real finite_difference_derivative(const F f, Real x, Real* error, const fd_tag<2>&)   {      using std::sqrt;      using std::pow;      using std::abs;      using std::numeric_limits;      const Real eps = (numeric_limits<Real>::epsilon)();      // Error bound ~eps^2/3      // See the previous discussion to understand determination of h and the error bound.      // Series[(f[x+h] - f[x-h])/(2*h), {h, 0, 4}]      Real h = pow(3 * eps, static_cast<Real>(1) / static_cast<Real>(3));      h = detail::make_xph_representable(x, h);      Real yh = f(x + h);      Real ymh = f(x - h);      Real diff = yh - ymh;      if (error)      {         Real yth = f(x + 2 * h);         Real ymth = f(x - 2 * h);         *error = eps * (abs(yh) + abs(ymh)) / (2 * h) + abs((yth - ymth) / 2 - diff) / (6 * h);      }      return diff / (2 * h);   }   template<class F, class Real>   Real finite_difference_derivative(const F f, Real x, Real* error, const fd_tag<4>&)   {      using std::sqrt;      using std::pow;      using std::abs;      using std::numeric_limits;      const Real eps = (numeric_limits<Real>::epsilon)();      // Error bound ~eps^4/5      Real h = pow(11.25*eps, (Real)1 / (Real)5);      h = detail::make_xph_representable(x, h);      Real ymth = f(x - 2 * h);      Real yth = f(x + 2 * h);      Real yh = f(x + h);      Real ymh = f(x - h);      Real y2 = ymth - yth;      Real y1 = yh - ymh;      if (error)      {         // Mathematica code to extract the remainder:         // Series[(f[x-2*h]+ 8*f[x+h] - 8*f[x-h] - f[x+2*h])/(12*h), {h, 0, 7}]         Real y_three_h = f(x + 3 * h);         Real y_m_three_h = f(x - 3 * h);         // Error from fifth derivative:         *error = abs((y_three_h - y_m_three_h) / 2 + 2 * (ymth - yth) + 5 * (yh - ymh) / 2) / (30 * h);         // Error from function evaluation:         *error += eps * (abs(yth) + abs(ymth) + 8 * (abs(ymh) + abs(yh))) / (12 * h);      }      return (y2 + 8 * y1) / (12 * h);   }   template<class F, class Real>   Real finite_difference_derivative(const F f, Real x, Real* error, const fd_tag<6>&)   {      using std::sqrt;      using std::pow;      using std::abs;      using std::numeric_limits;      const Real eps = (numeric_limits<Real>::epsilon)();      // Error bound ~eps^6/7      // Error: h^6f^(7)(x)/140 + 5|f(x)|eps/h      Real h = pow(eps / 168, (Real)1 / (Real)7);      h = detail::make_xph_representable(x, h);      Real yh = f(x + h);      Real ymh = f(x - h);      Real y1 = yh - ymh;      Real y2 = f(x - 2 * h) - f(x + 2 * h);      Real y3 = f(x + 3 * h) - f(x - 3 * h);      if (error)      {         // Mathematica code to generate fd scheme for 7th derivative:         // Sum[(-1)^i*Binomial[7, i]*(f[x+(3-i)*h] + f[x+(4-i)*h])/2, {i, 0, 7}]         // Mathematica to demonstrate that this is a finite difference formula for 7th derivative:         // Series[(f[x+4*h]-f[x-4*h] + 6*(f[x-3*h] - f[x+3*h]) + 14*(f[x-h] - f[x+h] + f[x+2*h] - f[x-2*h]))/2, {h, 0, 15}]         Real y7 = (f(x + 4 * h) - f(x - 4 * h) - 6 * y3 - 14 * y1 - 14 * y2) / 2;         *error = abs(y7) / (140 * h) + 5 * (abs(yh) + abs(ymh))*eps / h;      }      return (y3 + 9 * y2 + 45 * y1) / (60 * h);   }   template<class F, class Real>   Real finite_difference_derivative(const F f, Real x, Real* error, const fd_tag<8>&)   {      using std::sqrt;      using std::pow;      using std::abs;      using std::numeric_limits;      const Real eps = (numeric_limits<Real>::epsilon)();      // Error bound ~eps^8/9.      // In double precision, we only expect to lose two digits of precision while using this formula, at the cost of 8 function evaluations.      // Error: h^8|f^(9)(x)|/630 + 7|f(x)|eps/h assuming 7 unstabilized additions.      // Mathematica code to get the error:      // Series[(f[x+h]-f[x-h])*(4/5) + (1/5)*(f[x-2*h] - f[x+2*h]) + (4/105)*(f[x+3*h] - f[x-3*h]) + (1/280)*(f[x-4*h] - f[x+4*h]), {h, 0, 9}]      // If we used Kahan summation, we could get the max error down to h^8|f^(9)(x)|/630 + |f(x)|eps/h.      Real h = pow(551.25*eps, (Real)1 / (Real)9);      h = detail::make_xph_representable(x, h);      Real yh = f(x + h);      Real ymh = f(x - h);      Real y1 = yh - ymh;      Real y2 = f(x - 2 * h) - f(x + 2 * h);      Real y3 = f(x + 3 * h) - f(x - 3 * h);      Real y4 = f(x - 4 * h) - f(x + 4 * h);      Real tmp1 = 3 * y4 / 8 + 4 * y3;      Real tmp2 = 21 * y2 + 84 * y1;      if (error)      {         // Mathematica code to generate fd scheme for 7th derivative:         // Sum[(-1)^i*Binomial[9, i]*(f[x+(4-i)*h] + f[x+(5-i)*h])/2, {i, 0, 9}]         // Mathematica to demonstrate that this is a finite difference formula for 7th derivative:         // Series[(f[x+5*h]-f[x- 5*h])/2 + 4*(f[x-4*h] - f[x+4*h]) + 27*(f[x+3*h] - f[x-3*h])/2 + 24*(f[x-2*h]  - f[x+2*h]) + 21*(f[x+h] - f[x-h]), {h, 0, 15}]         Real f9 = (f(x + 5 * h) - f(x - 5 * h)) / 2 + 4 * y4 + 27 * y3 / 2 + 24 * y2 + 21 * y1;         *error = abs(f9) / (630 * h) + 7 * (abs(yh) + abs(ymh))*eps / h;      }      return (tmp1 + tmp2) / (105 * h);   }   template<class F, class Real, class tag>   Real finite_difference_derivative(const F, Real, Real*, const tag&)   {      // Always fails, but condition is template-arg-dependent so only evaluated if we get instantiated.      BOOST_STATIC_ASSERT_MSG(sizeof(Real) == 0, "Finite difference not implemented for this order: try 1, 2, 4, 6 or 8");   }}template<class F, class Real, size_t order=6>inline Real finite_difference_derivative(const F f, Real x, Real* error = nullptr){   return detail::finite_difference_derivative(f, x, error, detail::fd_tag<order>());}}}}  // namespaces#endif
 |