| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 | // Copyright Nick Thompson, 2017// Use, modification and distribution are subject to the// Boost Software License, Version 1.0.// (See accompanying file LICENSE_1_0.txt// or copy at http://www.boost.org/LICENSE_1_0.txt)/* * This class performs exp-sinh quadrature on half infinite intervals. * * References: * * 1) Tanaka, Ken'ichiro, et al. "Function classes for double exponential integration formulas." Numerische Mathematik 111.4 (2009): 631-655. */#ifndef BOOST_MATH_QUADRATURE_EXP_SINH_HPP#define BOOST_MATH_QUADRATURE_EXP_SINH_HPP#include <cmath>#include <limits>#include <memory>#include <boost/math/quadrature/detail/exp_sinh_detail.hpp>namespace boost{ namespace math{ namespace quadrature {template<class Real, class Policy = policies::policy<> >class exp_sinh{public:   exp_sinh(size_t max_refinements = 9)      : m_imp(std::make_shared<detail::exp_sinh_detail<Real, Policy>>(max_refinements)) {}    template<class F>    auto integrate(const F& f, Real a, Real b, Real tol = boost::math::tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr)->decltype(std::declval<F>()(std::declval<Real>()))  const;    template<class F>    auto integrate(const F& f, Real tol = boost::math::tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr)->decltype(std::declval<F>()(std::declval<Real>()))  const;private:    std::shared_ptr<detail::exp_sinh_detail<Real, Policy>> m_imp;};template<class Real, class Policy>template<class F>auto exp_sinh<Real, Policy>::integrate(const F& f, Real a, Real b, Real tolerance, Real* error, Real* L1, std::size_t* levels)->decltype(std::declval<F>()(std::declval<Real>()))  const{    typedef decltype(f(a)) K;    using std::abs;    using boost::math::constants::half;    using boost::math::quadrature::detail::exp_sinh_detail;    static const char* function = "boost::math::quadrature::exp_sinh<%1%>::integrate";    // Neither limit may be a NaN:    if((boost::math::isnan)(a) || (boost::math::isnan)(b))    {       return static_cast<K>(policies::raise_domain_error(function, "NaN supplied as one limit of integration - sorry I don't know what to do", a, Policy()));     }    // Right limit is infinite:    if ((boost::math::isfinite)(a) && (b >= boost::math::tools::max_value<Real>()))    {        // If a = 0, don't use an additional level of indirection:        if (a == (Real) 0)        {            return m_imp->integrate(f, error, L1, function, tolerance, levels);        }        const auto u = [&](Real t)->K { return f(t + a); };        return m_imp->integrate(u, error, L1, function, tolerance, levels);    }    if ((boost::math::isfinite)(b) && a <= -boost::math::tools::max_value<Real>())    {        const auto u = [&](Real t)->K { return f(b-t);};        return m_imp->integrate(u, error, L1, function, tolerance, levels);    }    // Infinite limits:    if ((a <= -boost::math::tools::max_value<Real>()) && (b >= boost::math::tools::max_value<Real>()))    {        return static_cast<K>(policies::raise_domain_error(function, "Use sinh_sinh quadrature for integration over the whole real line; exp_sinh is for half infinite integrals.", a, Policy()));    }    // If we get to here then both ends must necessarily be finite:    return static_cast<K>(policies::raise_domain_error(function, "Use tanh_sinh quadrature for integration over finite domains; exp_sinh is for half infinite integrals.", a, Policy()));}template<class Real, class Policy>template<class F>auto exp_sinh<Real, Policy>::integrate(const F& f, Real tolerance, Real* error, Real* L1, std::size_t* levels)->decltype(std::declval<F>()(std::declval<Real>())) const{    static const char* function = "boost::math::quadrature::exp_sinh<%1%>::integrate";    return m_imp->integrate(f, error, L1, function, tolerance, levels);}}}}#endif
 |